Nuprl Lemma : presheaf-type-iso_wf

[C:SmallCategory]. ∀[X:ps_context{j:l}(C)].  (presheaf-type-iso(X) ∈ presheaf_type{i:l}(C; X) ⟶ {X ⊢_})


Proof




Definitions occuring in Statement :  presheaf-type-iso: presheaf-type-iso(X) presheaf-type: {X ⊢ _} presheaf_type: presheaf_type{i:l}(C; X) ps_context: __⊢ uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T presheaf_type: presheaf_type{i:l}(C; X) presheaf: Presheaf(C) cat-functor: Functor(C1;C2) presheaf-type-iso: presheaf-type-iso(X) presheaf-type: {X ⊢ _} all: x:A. B[x] subtype_rel: A ⊆B type-cat: TypeCat and: P ∧ Q functor-ob: ob(F) pi1: fst(t) I_set: A(I) uimplies: supposing a small-category: SmallCategory spreadn: spread4 ps_context: __⊢ cat-comp: cat-comp(C) compose: g pi2: snd(t) cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) op-cat: op-cat(C) squash: T prop: true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  ob_pair_lemma arrow_pair_lemma presheaf_type_wf ps_context_cumulativity2 small-category-cumulativity-2 ps_context_wf small-category_wf sets_wf cat_arrow_triple_lemma cat_id_tuple_lemma cat_comp_tuple_lemma cat_ob_pair_lemma I_set_wf cat-ob_wf psc-restriction_wf cat-arrow_wf cat-id_wf subtype_rel-equal psc-restriction-id cat-comp_wf psc-restriction-comp cat_ob_op_lemma op-cat-id op-cat-arrow op-cat-comp sets-ob sets-id sets-arrow sets-comp psc_restriction_pair_lemma I_set_pair_redex_lemma equal_wf squash_wf true_wf istype-universe subtype_rel_self iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut functionExtensionality sqequalHypSubstitution setElimination thin rename productElimination sqequalRule extract_by_obid dependent_functionElimination Error :memTop,  hypothesis instantiate isectElimination hypothesisEquality applyEquality axiomEquality equalityTransitivity equalitySymmetry universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType because_Cache dependent_set_memberEquality_alt dependent_pairEquality_alt lambdaEquality_alt equalityIstype functionIsType independent_pairFormation lambdaFormation_alt productIsType independent_isectElimination applyLambdaEquality imageElimination universeEquality functionEquality natural_numberEquality imageMemberEquality baseClosed independent_functionElimination

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].
    (presheaf-type-iso(X)  \mmember{}  presheaf\_type\{i:l\}(C;  X)  {}\mrightarrow{}  \{X  \mvdash{}'  \_\})



Date html generated: 2020_05_20-PM-01_25_30
Last ObjectModification: 2020_04_02-AM-10_47_29

Theory : presheaf!models!of!type!theory


Home Index