Nuprl Lemma : clear-denominator2
∀[a,b,c,d,e:ℝ]. uiff((((a/b) * c) * e) = d;(c * e * a) = (d * b)) supposing b ≠ r0
Proof
Definitions occuring in Statement :
rdiv: (x/y)
,
rneq: x ≠ y
,
req: x = y
,
rmul: a * b
,
int-to-real: r(n)
,
real: ℝ
,
uiff: uiff(P;Q)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
natural_number: $n
Definitions unfolded in proof :
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
,
prop: ℙ
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :
req_witness,
rmul_wf,
req_wf,
rdiv_wf,
uiff_wf,
rneq_wf,
int-to-real_wf,
real_wf,
iff_weakening_uiff,
clear-denominator1,
req_functionality,
rmul_assoc,
req_weakening,
uiff_transitivity,
req_inversion,
rmul-assoc,
rmul_functionality,
rmul_comm,
rmul-ac
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
independent_pairFormation,
isect_memberFormation,
introduction,
cut,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
independent_functionElimination,
because_Cache,
independent_isectElimination,
cumulativity,
natural_numberEquality,
addLevel,
productElimination,
sqequalRule,
independent_pairEquality,
isect_memberEquality,
equalityTransitivity,
equalitySymmetry
Latex:
\mforall{}[a,b,c,d,e:\mBbbR{}]. uiff((((a/b) * c) * e) = d;(c * e * a) = (d * b)) supposing b \mneq{} r0
Date html generated:
2017_10_03-AM-08_38_34
Last ObjectModification:
2017_03_14-AM-11_43_19
Theory : reals
Home
Index