Nuprl Lemma : poly-deriv-linear
∀n:ℕ. ∀a,b:ℕn + 1 ⟶ ℝ. ∀c,d:ℝ. ∀i:ℕn.
  ((poly-deriv(λi.((c * (a i)) + (d * (b i)))) i) = ((c * (poly-deriv(a) i)) + (d * (poly-deriv(b) i))))
Proof
Definitions occuring in Statement : 
poly-deriv: poly-deriv(a), 
req: x = y, 
rmul: a * b, 
radd: a + b, 
real: ℝ, 
int_seg: {i..j-}, 
nat: ℕ, 
all: ∀x:A. B[x], 
apply: f a, 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
add: n + m, 
natural_number: $n
Definitions unfolded in proof : 
less_than: a < b, 
le: A ≤ B, 
prop: ℙ, 
subtract: n - m, 
top: Top, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
exists: ∃x:A. B[x], 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
or: P ∨ Q, 
decidable: Dec(P), 
ge: i ≥ j , 
lelt: i ≤ j < k, 
uimplies: b supposing a, 
and: P ∧ Q, 
uiff: uiff(P;Q), 
int_seg: {i..j-}, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
poly-deriv: poly-deriv(a), 
all: ∀x:A. B[x], 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
rmul-ac, 
req_transitivity, 
rmul_comm, 
rmul_functionality, 
radd_functionality, 
rmul-distrib, 
req_functionality, 
uiff_transitivity, 
int_seg_wf, 
real_wf, 
nat_wf, 
req_wf, 
rmul_wf, 
int-to-real_wf, 
radd_wf, 
add-member-int_seg2, 
nat_properties, 
decidable__le, 
subtract_wf, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermSubtract_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
add-subtract-cancel, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
lelt_wf, 
req_weakening
Rules used in proof : 
introduction, 
computeAll, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
lambdaEquality, 
dependent_pairFormation, 
unionElimination, 
dependent_functionElimination, 
independent_pairFormation, 
dependent_set_memberEquality, 
independent_isectElimination, 
productElimination, 
because_Cache, 
applyEquality, 
addEquality, 
functionEquality, 
hypothesis, 
hypothesisEquality, 
rename, 
setElimination, 
natural_numberEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
lemma_by_obid, 
cut, 
sqequalRule, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
independent_functionElimination
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b:\mBbbN{}n  +  1  {}\mrightarrow{}  \mBbbR{}.  \mforall{}c,d:\mBbbR{}.  \mforall{}i:\mBbbN{}n.
    ((poly-deriv(\mlambda{}i.((c  *  (a  i))  +  (d  *  (b  i))))  i)
    =  ((c  *  (poly-deriv(a)  i))  +  (d  *  (poly-deriv(b)  i))))
Date html generated:
2016_05_18-AM-10_08_19
Last ObjectModification:
2016_01_17-AM-00_38_41
Theory : reals
Home
Index