Nuprl Lemma : rational-approx-property1

x:ℝ. ∀n:ℕ+.  (x ≤ ((x within 1/n) (r1/r(n))))


Proof




Definitions occuring in Statement :  rational-approx: (x within 1/n) rdiv: (x/y) rleq: x ≤ y radd: b int-to-real: r(n) real: nat_plus: + all: x:A. B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] real: and: P ∧ Q nat_plus: + uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q implies:  Q decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop: rge: x ≥ y uiff: uiff(P;Q) squash: T true: True subtype_rel: A ⊆B rsub: y
Lemmas referenced :  radd-rminus-assoc req_weakening radd_comm radd_functionality rleq_functionality uiff_transitivity iff_weakening_equal radd_comm_eq true_wf squash_wf rminus_wf radd_wf rleq_wf radd-preserves-rleq rleq_weakening_equal rleq_functionality_wrt_implies rless_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_plus_properties rless-int int-to-real_wf rdiv_wf rabs_wf rational-approx_wf rsub_wf rabs-bounds real_wf nat_plus_wf rational-approx-property-ext
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination setElimination rename productElimination natural_numberEquality independent_isectElimination sqequalRule inrFormation because_Cache independent_functionElimination unionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll applyEquality imageElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed universeEquality

Latex:
\mforall{}x:\mBbbR{}.  \mforall{}n:\mBbbN{}\msupplus{}.    (x  \mleq{}  ((x  within  1/n)  +  (r1/r(n))))



Date html generated: 2016_05_18-AM-07_30_17
Last ObjectModification: 2016_01_17-AM-02_00_07

Theory : reals


Home Index