Nuprl Lemma : rationals-dense-in-interval
∀I:Interval. dense-in-interval(I;λr.∃z:ℤ. ∃d:ℕ+. (r = (r(z)/r(d))))
Proof
Definitions occuring in Statement : 
dense-in-interval: dense-in-interval(I;X)
, 
interval: Interval
, 
rdiv: (x/y)
, 
req: x = y
, 
int-to-real: r(n)
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
lambda: λx.A[x]
, 
int: ℤ
Definitions unfolded in proof : 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
dense-in-interval: dense-in-interval(I;X)
, 
all: ∀x:A. B[x]
, 
cand: A c∧ B
, 
top: Top
, 
false: False
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
decidable: Dec(P)
, 
sq_exists: ∃x:{A| B[x]}
, 
rless: x < y
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
guard: {T}
, 
rneq: x ≠ y
, 
uimplies: b supposing a
, 
nat_plus: ℕ+
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
interval_wf, 
i-member_wf, 
real_wf, 
set_wf, 
rless_wf, 
nat_plus_wf, 
exists_wf, 
req_wf, 
equal_wf, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
rneq-int, 
req_weakening, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__lt, 
nat_plus_properties, 
rless-int, 
int-to-real_wf, 
rdiv_wf, 
rationals-dense
Rules used in proof : 
lambdaEquality, 
hypothesis, 
hypothesisEquality, 
rename, 
setElimination, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
sqequalRule, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
productEquality, 
independent_pairFormation, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
approximateComputation, 
unionElimination, 
natural_numberEquality, 
independent_functionElimination, 
inrFormation, 
independent_isectElimination, 
because_Cache, 
dependent_pairFormation, 
productElimination, 
dependent_set_memberEquality, 
dependent_functionElimination
Latex:
\mforall{}I:Interval.  dense-in-interval(I;\mlambda{}r.\mexists{}z:\mBbbZ{}.  \mexists{}d:\mBbbN{}\msupplus{}.  (r  =  (r(z)/r(d))))
Date html generated:
2017_10_03-AM-10_20_06
Last ObjectModification:
2017_07_31-PM-00_07_13
Theory : reals
Home
Index