Nuprl Lemma : real-vec-mul-cancel
∀[n:ℕ]. ∀[v:ℝ^n]. ∀[x,y:ℝ].  (v ≠ λi.r0 
⇒ x = y supposing req-vec(n;x*v;y*v))
Proof
Definitions occuring in Statement : 
real-vec-sep: a ≠ b
, 
real-vec-mul: a*X
, 
req-vec: req-vec(n;x;y)
, 
real-vec: ℝ^n
, 
req: x = y
, 
int-to-real: r(n)
, 
real: ℝ
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
lambda: λx.A[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
prop: ℙ
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
req-vec: req-vec(n;x;y)
, 
real-vec-mul: a*X
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
req_int_terms: t1 ≡ t2
, 
false: False
, 
not: ¬A
, 
top: Top
Lemmas referenced : 
req_witness, 
req-vec_wf, 
real-vec-mul_wf, 
real-vec-sep_wf, 
int-to-real_wf, 
int_seg_wf, 
real_wf, 
real-vec_wf, 
nat_wf, 
real-vec-sep-iff-rneq, 
rmul_preserves_req, 
req_functionality, 
rmul_wf, 
rmul_comm, 
req-implies-req, 
rsub_wf, 
itermSubtract_wf, 
itermMultiply_wf, 
itermVar_wf, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
natural_numberEquality, 
setElimination, 
rename, 
dependent_functionElimination, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
applyEquality, 
independent_isectElimination, 
approximateComputation, 
int_eqEquality, 
intEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[v:\mBbbR{}\^{}n].  \mforall{}[x,y:\mBbbR{}].    (v  \mneq{}  \mlambda{}i.r0  {}\mRightarrow{}  x  =  y  supposing  req-vec(n;x*v;y*v))
Date html generated:
2018_05_22-PM-02_26_45
Last ObjectModification:
2018_03_23-AM-11_05_36
Theory : reals
Home
Index