Nuprl Lemma : rmax-limit

x,y:ℕ ⟶ ℝ. ∀a,b:ℝ.  (lim n→∞.x[n]  lim n→∞.y[n]  lim n→∞.rmax(x[n];y[n]) rmax(a;b))


Proof




Definitions occuring in Statement :  converges-to: lim n→∞.x[n] y rmax: rmax(x;y) real: nat: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q converges-to: lim n→∞.x[n] y member: t ∈ T sq_exists: x:{A| B[x]} nat: uall: [x:A]. B[x] guard: {T} nat_plus: + ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top and: P ∧ Q prop: uiff: uiff(P;Q) so_lambda: λ2x.t[x] so_apply: x[s] rneq: x ≠ y iff: ⇐⇒ Q rev_implies:  Q cand: c∧ B rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y
Lemmas referenced :  imax_wf imax_nat nat_wf nat_properties nat_plus_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf equal_wf le_wf imax_lb all_wf rleq_wf rabs_wf rsub_wf rmax_wf rdiv_wf int-to-real_wf rless-int decidable__lt intformless_wf int_formula_prop_less_lemma rless_wf nat_plus_wf converges-to_wf real_wf rabs-difference-rmax rmax_lb rleq_functionality_wrt_implies rleq_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution cut hypothesis dependent_functionElimination thin hypothesisEquality setElimination rename dependent_set_memberFormation dependent_set_memberEquality introduction extract_by_obid isectElimination equalityTransitivity equalitySymmetry applyLambdaEquality natural_numberEquality unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination because_Cache productElimination functionEquality applyEquality functionExtensionality inrFormation

Latex:
\mforall{}x,y:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  \mforall{}a,b:\mBbbR{}.    (lim  n\mrightarrow{}\minfty{}.x[n]  =  a  {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.y[n]  =  b  {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.rmax(x[n];y[n])  =  rmax(a;b))



Date html generated: 2017_10_03-AM-09_05_14
Last ObjectModification: 2017_07_28-AM-07_41_27

Theory : reals


Home Index