Nuprl Lemma : rmul-int-rdiv2
∀[x:ℝ]. ∀[a,b:ℤ].  (((r(b)/x) * r(a)) = (r(a * b)/x)) supposing x ≠ r0
Proof
Definitions occuring in Statement : 
rdiv: (x/y)
, 
rneq: x ≠ y
, 
req: x = y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
multiply: n * m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
Lemmas referenced : 
rmul-int, 
rmul-rdiv-cancel2, 
rmul-rdiv-cancel, 
rmul_comm, 
rmul_functionality, 
req_transitivity, 
rmul-ac, 
rmul-assoc, 
req_inversion, 
req_functionality, 
uiff_transitivity, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_mul_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
itermVar_wf, 
itermMultiply_wf, 
intformeq_wf, 
intformnot_wf, 
satisfiable-full-omega-tt, 
decidable__equal_int, 
req-int, 
req_weakening, 
req_wf, 
real_wf, 
rneq_wf, 
req_witness, 
int-to-real_wf, 
rdiv_wf, 
rmul_wf, 
rmul_preserves_req
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
because_Cache, 
multiplyEquality, 
productElimination, 
independent_functionElimination, 
intEquality, 
sqequalRule, 
isect_memberEquality, 
natural_numberEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
voidElimination, 
voidEquality, 
computeAll
Latex:
\mforall{}[x:\mBbbR{}].  \mforall{}[a,b:\mBbbZ{}].    (((r(b)/x)  *  r(a))  =  (r(a  *  b)/x))  supposing  x  \mneq{}  r0
Date html generated:
2016_05_18-AM-07_27_58
Last ObjectModification:
2016_01_17-AM-01_58_23
Theory : reals
Home
Index