Nuprl Lemma : rnexp-rless-odd
∀n:ℕ+. ((↑isOdd(n)) 
⇒ (∀x,y:ℝ.  ((x < y) 
⇒ (x^n < y^n))))
Proof
Definitions occuring in Statement : 
rless: x < y
, 
rnexp: x^k1
, 
real: ℝ
, 
isOdd: isOdd(n)
, 
nat_plus: ℕ+
, 
assert: ↑b
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
or: P ∨ Q
, 
prop: ℙ
, 
nat_plus: ℕ+
, 
uimplies: b supposing a
, 
itermConstant: "const"
, 
req_int_terms: t1 ≡ t2
, 
false: False
, 
not: ¬A
, 
top: Top
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
sq_type: SQType(T)
, 
guard: {T}
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
bfalse: ff
, 
iff: P 
⇐⇒ Q
Lemmas referenced : 
rless-cases1, 
int-to-real_wf, 
rless_wf, 
real_wf, 
assert_wf, 
isOdd_wf, 
nat_plus_wf, 
rnexp-rless2, 
rminus_wf, 
rless-implies-rless, 
real_term_polynomial, 
itermSubtract_wf, 
itermVar_wf, 
itermMinus_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_var_lemma, 
real_term_value_minus_lemma, 
req-iff-rsub-is-0, 
rsub_wf, 
itermConstant_wf, 
rnexp_wf, 
nat_plus_subtype_nat, 
ifthenelse_wf, 
bool_cases, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
eqtt_to_assert, 
eqff_to_assert, 
assert_of_bnot, 
rless_functionality, 
rnexp-rminus
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
isectElimination, 
natural_numberEquality, 
unionElimination, 
setElimination, 
rename, 
because_Cache, 
independent_isectElimination, 
sqequalRule, 
computeAll, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
productElimination, 
applyEquality, 
instantiate, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
lemma_by_obid
Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  ((\muparrow{}isOdd(n))  {}\mRightarrow{}  (\mforall{}x,y:\mBbbR{}.    ((x  <  y)  {}\mRightarrow{}  (x\^{}n  <  y\^{}n))))
Date html generated:
2017_10_03-AM-08_40_09
Last ObjectModification:
2017_07_28-AM-07_31_12
Theory : reals
Home
Index