Nuprl Lemma : rnexp-rless-odd

n:ℕ+((↑isOdd(n))  (∀x,y:ℝ.  ((x < y)  (x^n < y^n))))


Proof




Definitions occuring in Statement :  rless: x < y rnexp: x^k1 real: isOdd: isOdd(n) nat_plus: + assert: b all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] or: P ∨ Q prop: nat_plus: + uimplies: supposing a itermConstant: "const" req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top uiff: uiff(P;Q) and: P ∧ Q subtype_rel: A ⊆B sq_type: SQType(T) guard: {T} ifthenelse: if then else fi  btrue: tt bfalse: ff iff: ⇐⇒ Q
Lemmas referenced :  rless-cases1 int-to-real_wf rless_wf real_wf assert_wf isOdd_wf nat_plus_wf rnexp-rless2 rminus_wf rless-implies-rless real_term_polynomial itermSubtract_wf itermVar_wf itermMinus_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_var_lemma real_term_value_minus_lemma req-iff-rsub-is-0 rsub_wf itermConstant_wf rnexp_wf nat_plus_subtype_nat ifthenelse_wf bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert eqff_to_assert assert_of_bnot rless_functionality rnexp-rminus
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis isectElimination natural_numberEquality unionElimination setElimination rename because_Cache independent_isectElimination sqequalRule computeAll lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality productElimination applyEquality instantiate cumulativity equalityTransitivity equalitySymmetry lemma_by_obid

Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  ((\muparrow{}isOdd(n))  {}\mRightarrow{}  (\mforall{}x,y:\mBbbR{}.    ((x  <  y)  {}\mRightarrow{}  (x\^{}n  <  y\^{}n))))



Date html generated: 2017_10_03-AM-08_40_09
Last ObjectModification: 2017_07_28-AM-07_31_12

Theory : reals


Home Index