Nuprl Lemma : rnexp-rless2

x,y:ℝ.  ((x < y)  (r0 < y)  (∀n:ℕ+((↑isOdd(n))  (x^n < y^n))))


Proof




Definitions occuring in Statement :  rless: x < y rnexp: x^k1 int-to-real: r(n) real: isOdd: isOdd(n) nat_plus: + assert: b all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T subtype_rel: A ⊆B uall: [x:A]. B[x] or: P ∨ Q prop: nat_plus: + uimplies: supposing a not: ¬A iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q less_than: a < b squash: T less_than': less_than'(a;b) true: True bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  rnexp-positive nat_plus_subtype_nat rless-cases1 int-to-real_wf rnexp_wf rnexp-rless assert_wf isOdd_wf nat_plus_wf rless_wf real_wf not-rless rmul_reverses_rless rless-int rmul_wf rminus_wf rless_functionality rmul-int req_weakening rmul-minus rmul_over_rminus rminus_functionality rmul-one-both ifthenelse_wf bool_wf eqtt_to_assert eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base req_functionality rnexp-rminus rless_transitivity2 rleq_weakening_rless rless_irreflexivity req_transitivity rminus-rminus
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis applyEquality sqequalRule isectElimination natural_numberEquality because_Cache unionElimination setElimination rename independent_isectElimination minusEquality productElimination independent_pairFormation imageMemberEquality baseClosed multiplyEquality promote_hyp equalityElimination dependent_pairFormation equalityTransitivity equalitySymmetry instantiate cumulativity voidElimination

Latex:
\mforall{}x,y:\mBbbR{}.    ((x  <  y)  {}\mRightarrow{}  (r0  <  y)  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}\msupplus{}.  ((\muparrow{}isOdd(n))  {}\mRightarrow{}  (x\^{}n  <  y\^{}n))))



Date html generated: 2017_10_03-AM-08_40_01
Last ObjectModification: 2017_07_28-AM-07_31_05

Theory : reals


Home Index