Nuprl Lemma : rnexp-rless2
∀x,y:ℝ.  ((x < y) ⇒ (r0 < y) ⇒ (∀n:ℕ+. ((↑isOdd(n)) ⇒ (x^n < y^n))))
Proof
Definitions occuring in Statement : 
rless: x < y, 
rnexp: x^k1, 
int-to-real: r(n), 
real: ℝ, 
isOdd: isOdd(n), 
nat_plus: ℕ+, 
assert: ↑b, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
or: P ∨ Q, 
prop: ℙ, 
nat_plus: ℕ+, 
uimplies: b supposing a, 
not: ¬A, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
true: True, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
rnexp-positive, 
nat_plus_subtype_nat, 
rless-cases1, 
int-to-real_wf, 
rnexp_wf, 
rnexp-rless, 
assert_wf, 
isOdd_wf, 
nat_plus_wf, 
rless_wf, 
real_wf, 
not-rless, 
rmul_reverses_rless, 
rless-int, 
rmul_wf, 
rminus_wf, 
rless_functionality, 
rmul-int, 
req_weakening, 
rmul-minus, 
rmul_over_rminus, 
rminus_functionality, 
rmul-one-both, 
ifthenelse_wf, 
bool_wf, 
eqtt_to_assert, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
req_functionality, 
rnexp-rminus, 
rless_transitivity2, 
rleq_weakening_rless, 
rless_irreflexivity, 
req_transitivity, 
rminus-rminus
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
applyEquality, 
sqequalRule, 
isectElimination, 
natural_numberEquality, 
because_Cache, 
unionElimination, 
setElimination, 
rename, 
independent_isectElimination, 
minusEquality, 
productElimination, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
multiplyEquality, 
promote_hyp, 
equalityElimination, 
dependent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
cumulativity, 
voidElimination
Latex:
\mforall{}x,y:\mBbbR{}.    ((x  <  y)  {}\mRightarrow{}  (r0  <  y)  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}\msupplus{}.  ((\muparrow{}isOdd(n))  {}\mRightarrow{}  (x\^{}n  <  y\^{}n))))
Date html generated:
2017_10_03-AM-08_40_01
Last ObjectModification:
2017_07_28-AM-07_31_05
Theory : reals
Home
Index