Nuprl Lemma : rnexp3

[x:ℝ]. (x^3 (x x))


Proof




Definitions occuring in Statement :  rnexp: x^k1 req: y rmul: b real: uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: false: False subtract: m eq_int: (i =z j) ifthenelse: if then else fi  bfalse: ff uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  req_witness rnexp_wf decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf istype-le rmul_wf real_wf ifthenelse_wf eq_int_wf int-to-real_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma rmul_assoc req_functionality rnexp_unroll req_weakening rmul_functionality rnexp2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin dependent_set_memberEquality_alt natural_numberEquality dependent_functionElimination hypothesis unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt isect_memberEquality_alt voidElimination sqequalRule universeIsType hypothesisEquality because_Cache productElimination

Latex:
\mforall{}[x:\mBbbR{}].  (x\^{}3  =  (x  *  x  *  x))



Date html generated: 2019_10_29-AM-09_39_31
Last ObjectModification: 2019_02_02-PM-02_21_47

Theory : reals


Home Index