Nuprl Lemma : rnexp3
∀[x:ℝ]. (x^3 = (x * x * x))
Proof
Definitions occuring in Statement : 
rnexp: x^k1
, 
req: x = y
, 
rmul: a * b
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
false: False
, 
subtract: n - m
, 
eq_int: (i =z j)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
req_witness, 
rnexp_wf, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-le, 
rmul_wf, 
real_wf, 
ifthenelse_wf, 
eq_int_wf, 
int-to-real_wf, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
rmul_assoc, 
req_functionality, 
rnexp_unroll, 
req_weakening, 
rmul_functionality, 
rnexp2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
dependent_functionElimination, 
hypothesis, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
universeIsType, 
hypothesisEquality, 
because_Cache, 
productElimination
Latex:
\mforall{}[x:\mBbbR{}].  (x\^{}3  =  (x  *  x  *  x))
Date html generated:
2019_10_29-AM-09_39_31
Last ObjectModification:
2019_02_02-PM-02_21_47
Theory : reals
Home
Index