Nuprl Lemma : rv-line-circle-lemma0
∀n:ℕ. ∀r:ℝ. ∀p,q:ℝ^n.  ((||p|| ≤ r) 
⇒ (r0 ≤ (p⋅q - p^2 - ||q - p||^2 * (||p||^2 - r^2))))
Proof
Definitions occuring in Statement : 
real-vec-norm: ||x||
, 
dot-product: x⋅y
, 
real-vec-sub: X - Y
, 
real-vec: ℝ^n
, 
rleq: x ≤ y
, 
rnexp: x^k1
, 
rsub: x - y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
uimplies: b supposing a
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
req_int_terms: t1 ≡ t2
, 
top: Top
, 
rge: x ≥ y
, 
guard: {T}
Lemmas referenced : 
rleq_wf, 
real-vec-norm_wf, 
real-vec_wf, 
real_wf, 
nat_wf, 
radd-preserves-rleq, 
rsub_wf, 
rnexp_wf, 
int-to-real_wf, 
rleq_functionality, 
radd_wf, 
false_wf, 
le_wf, 
radd-zero, 
rnexp-rleq, 
real-vec-norm-nonneg, 
itermSubtract_wf, 
itermAdd_wf, 
itermVar_wf, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_add_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
real-vec-sub_wf, 
dot-product_wf, 
equal_wf, 
rmul_wf, 
itermMultiply_wf, 
real_term_value_mul_lemma, 
rmul_preserves_rleq2, 
rnexp2-nonneg, 
rmul_comm, 
rmul-zero-both, 
rleq_functionality_wrt_implies, 
rleq_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
natural_numberEquality, 
productElimination, 
independent_isectElimination, 
dependent_set_memberEquality, 
sqequalRule, 
independent_pairFormation, 
dependent_functionElimination, 
independent_functionElimination, 
approximateComputation, 
lambdaEquality, 
int_eqEquality, 
equalityTransitivity, 
equalitySymmetry, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}r:\mBbbR{}.  \mforall{}p,q:\mBbbR{}\^{}n.    ((||p||  \mleq{}  r)  {}\mRightarrow{}  (r0  \mleq{}  (p\mcdot{}q  -  p\^{}2  -  ||q  -  p||\^{}2  *  (||p||\^{}2  -  r\^{}2))))
Date html generated:
2018_05_22-PM-02_29_18
Last ObjectModification:
2018_03_23-PM-04_31_29
Theory : reals
Home
Index