Nuprl Lemma : rv-line-circle-lemma0

n:ℕ. ∀r:ℝ. ∀p,q:ℝ^n.  ((||p|| ≤ r)  (r0 ≤ (p⋅p^2 ||q p||^2 (||p||^2 r^2))))


Proof




Definitions occuring in Statement :  real-vec-norm: ||x|| dot-product: x⋅y real-vec-sub: Y real-vec: ^n rleq: x ≤ y rnexp: x^k1 rsub: y rmul: b int-to-real: r(n) real: nat: all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) uimplies: supposing a nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A req_int_terms: t1 ≡ t2 top: Top rge: x ≥ y guard: {T}
Lemmas referenced :  rleq_wf real-vec-norm_wf real-vec_wf real_wf nat_wf radd-preserves-rleq rsub_wf rnexp_wf int-to-real_wf rleq_functionality radd_wf false_wf le_wf radd-zero rnexp-rleq real-vec-norm-nonneg itermSubtract_wf itermAdd_wf itermVar_wf req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_add_lemma real_term_value_var_lemma real_term_value_const_lemma real-vec-sub_wf dot-product_wf equal_wf rmul_wf itermMultiply_wf real_term_value_mul_lemma rmul_preserves_rleq2 rnexp2-nonneg rmul_comm rmul-zero-both rleq_functionality_wrt_implies rleq_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis because_Cache natural_numberEquality productElimination independent_isectElimination dependent_set_memberEquality sqequalRule independent_pairFormation dependent_functionElimination independent_functionElimination approximateComputation lambdaEquality int_eqEquality equalityTransitivity equalitySymmetry intEquality isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}r:\mBbbR{}.  \mforall{}p,q:\mBbbR{}\^{}n.    ((||p||  \mleq{}  r)  {}\mRightarrow{}  (r0  \mleq{}  (p\mcdot{}q  -  p\^{}2  -  ||q  -  p||\^{}2  *  (||p||\^{}2  -  r\^{}2))))



Date html generated: 2018_05_22-PM-02_29_18
Last ObjectModification: 2018_03_23-PM-04_31_29

Theory : reals


Home Index