Nuprl Lemma : square-req-self-iff

x:ℝ((x x) ⇐⇒ (x r1) ∨ (x r0))


Proof




Definitions occuring in Statement :  req: y rmul: b int-to-real: r(n) real: all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q natural_number: $n
Definitions unfolded in proof :  rev_implies:  Q uall: [x:A]. B[x] prop: member: t ∈ T implies:  Q and: P ∧ Q iff: ⇐⇒ Q all: x:A. B[x] guard: {T} or: P ∨ Q true: True less_than': less_than'(a;b) squash: T less_than: a < b uiff: uiff(P;Q) uimplies: supposing a rneq: x ≠ y not: ¬A false: False rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  real_wf int-to-real_wf or_wf rmul_wf req_wf rless-int rless-cases rmul-rinv rmul_functionality req_transitivity req_functionality req_weakening rmul-one rmul_assoc rless_wf rinv_wf2 rmul_preserves_req rless_functionality rmul_comm rmul-zero-both rmul_preserves_rless rneq_wf not-rneq square-nonneg rleq_functionality rless_irreflexivity rless_transitivity1 rleq_weakening req_inversion rleq_weakening_rless rless_transitivity2 rmul-zero
Rules used in proof :  natural_numberEquality hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut independent_pairFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution inrFormation inlFormation unionElimination baseClosed imageMemberEquality sqequalRule productElimination independent_functionElimination dependent_functionElimination because_Cache independent_isectElimination voidElimination

Latex:
\mforall{}x:\mBbbR{}.  ((x  *  x)  =  x  \mLeftarrow{}{}\mRightarrow{}  (x  =  r1)  \mvee{}  (x  =  r0))



Date html generated: 2017_10_03-AM-08_47_37
Last ObjectModification: 2017_07_31-PM-09_30_41

Theory : reals


Home Index