Nuprl Lemma : square-req-self-iff
∀x:ℝ. ((x * x) = x ⇐⇒ (x = r1) ∨ (x = r0))
Proof
Definitions occuring in Statement : 
req: x = y, 
rmul: a * b, 
int-to-real: r(n), 
real: ℝ, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
or: P ∨ Q, 
natural_number: $n
Definitions unfolded in proof : 
rev_implies: P ⇐ Q, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T, 
implies: P ⇒ Q, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
all: ∀x:A. B[x], 
guard: {T}, 
or: P ∨ Q, 
true: True, 
less_than': less_than'(a;b), 
squash: ↓T, 
less_than: a < b, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
rneq: x ≠ y, 
not: ¬A, 
false: False, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
real_wf, 
int-to-real_wf, 
or_wf, 
rmul_wf, 
req_wf, 
rless-int, 
rless-cases, 
rmul-rinv, 
rmul_functionality, 
req_transitivity, 
req_functionality, 
req_weakening, 
rmul-one, 
rmul_assoc, 
rless_wf, 
rinv_wf2, 
rmul_preserves_req, 
rless_functionality, 
rmul_comm, 
rmul-zero-both, 
rmul_preserves_rless, 
rneq_wf, 
not-rneq, 
square-nonneg, 
rleq_functionality, 
rless_irreflexivity, 
rless_transitivity1, 
rleq_weakening, 
req_inversion, 
rleq_weakening_rless, 
rless_transitivity2, 
rmul-zero
Rules used in proof : 
natural_numberEquality, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
inrFormation, 
inlFormation, 
unionElimination, 
baseClosed, 
imageMemberEquality, 
sqequalRule, 
productElimination, 
independent_functionElimination, 
dependent_functionElimination, 
because_Cache, 
independent_isectElimination, 
voidElimination
Latex:
\mforall{}x:\mBbbR{}.  ((x  *  x)  =  x  \mLeftarrow{}{}\mRightarrow{}  (x  =  r1)  \mvee{}  (x  =  r0))
 Date html generated: 
2017_10_03-AM-08_47_37
 Last ObjectModification: 
2017_07_31-PM-09_30_41
Theory : reals
Home
Index