Nuprl Lemma : trivial-partition_wf
∀[I:Interval]. trivial-partition(I) ∈ partition(I) supposing i-finite(I)
Proof
Definitions occuring in Statement : 
trivial-partition: trivial-partition(I)
, 
partition: partition(I)
, 
i-finite: i-finite(I)
, 
interval: Interval
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
bfalse: ff
, 
cons: [a / b]
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
le: A ≤ B
, 
so_apply: x[s]
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
so_lambda: λ2x.t[x]
, 
less_than': less_than'(a;b)
, 
squash: ↓T
, 
less_than: a < b
, 
prop: ℙ
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
guard: {T}
, 
implies: P 
⇒ Q
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
so_apply: x[s1;s2]
, 
top: Top
, 
so_lambda: λ2x y.t[x; y]
, 
it: ⋅
, 
nil: []
, 
all: ∀x:A. B[x]
, 
select: L[n]
, 
frs-non-dec: frs-non-dec(L)
, 
partitions: partitions(I;p)
, 
partition: partition(I)
, 
trivial-partition: trivial-partition(I)
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
interval_wf, 
i-finite_wf, 
right-endpoint_wf, 
length_of_cons_lemma, 
null_cons_lemma, 
product_subtype_list, 
null_nil_lemma, 
list-cases, 
last_wf, 
false_wf, 
left-endpoint_wf, 
decidable__lt, 
int_formula_prop_not_lemma, 
intformnot_wf, 
decidable__le, 
select_wf, 
rleq_wf, 
length_wf, 
all_wf, 
less_than_wf, 
int_seg_wf, 
le_wf, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
intformand_wf, 
full-omega-unsat, 
int_seg_properties, 
base_wf, 
stuck-spread, 
length_of_nil_lemma, 
real_wf, 
nil_wf
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
hypothesis_subsumption, 
promote_hyp, 
unionElimination, 
functionEquality, 
productEquality, 
imageElimination, 
independent_pairFormation, 
dependent_functionElimination, 
intEquality, 
int_eqEquality, 
lambdaEquality, 
dependent_pairFormation, 
independent_functionElimination, 
approximateComputation, 
productElimination, 
rename, 
setElimination, 
hypothesisEquality, 
because_Cache, 
natural_numberEquality, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
lambdaFormation, 
independent_isectElimination, 
baseClosed, 
hypothesis, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
dependent_set_memberEquality, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[I:Interval].  trivial-partition(I)  \mmember{}  partition(I)  supposing  i-finite(I)
Date html generated:
2018_05_22-PM-02_07_43
Last ObjectModification:
2018_05_21-AM-00_19_14
Theory : reals
Home
Index