Nuprl Lemma : trivial-partition_wf

[I:Interval]. trivial-partition(I) ∈ partition(I) supposing i-finite(I)


Proof




Definitions occuring in Statement :  trivial-partition: trivial-partition(I) partition: partition(I) i-finite: i-finite(I) interval: Interval uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  bfalse: ff cons: [a b] btrue: tt ifthenelse: if then else fi  assert: b le: A ≤ B so_apply: x[s] or: P ∨ Q decidable: Dec(P) so_lambda: λ2x.t[x] less_than': less_than'(a;b) squash: T less_than: a < b prop: false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A lelt: i ≤ j < k int_seg: {i..j-} guard: {T} implies:  Q cand: c∧ B and: P ∧ Q so_apply: x[s1;s2] top: Top so_lambda: λ2y.t[x; y] it: nil: [] all: x:A. B[x] select: L[n] frs-non-dec: frs-non-dec(L) partitions: partitions(I;p) partition: partition(I) trivial-partition: trivial-partition(I) uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  interval_wf i-finite_wf right-endpoint_wf length_of_cons_lemma null_cons_lemma product_subtype_list null_nil_lemma list-cases last_wf false_wf left-endpoint_wf decidable__lt int_formula_prop_not_lemma intformnot_wf decidable__le select_wf rleq_wf length_wf all_wf less_than_wf int_seg_wf le_wf int_formula_prop_wf int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_and_lemma intformle_wf itermConstant_wf itermVar_wf intformless_wf intformand_wf full-omega-unsat int_seg_properties base_wf stuck-spread length_of_nil_lemma real_wf nil_wf
Rules used in proof :  equalitySymmetry equalityTransitivity axiomEquality hypothesis_subsumption promote_hyp unionElimination functionEquality productEquality imageElimination independent_pairFormation dependent_functionElimination intEquality int_eqEquality lambdaEquality dependent_pairFormation independent_functionElimination approximateComputation productElimination rename setElimination hypothesisEquality because_Cache natural_numberEquality voidEquality voidElimination isect_memberEquality lambdaFormation independent_isectElimination baseClosed hypothesis thin isectElimination sqequalHypSubstitution extract_by_obid dependent_set_memberEquality sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[I:Interval].  trivial-partition(I)  \mmember{}  partition(I)  supposing  i-finite(I)



Date html generated: 2018_05_22-PM-02_07_43
Last ObjectModification: 2018_05_21-AM-00_19_14

Theory : reals


Home Index