Nuprl Lemma : arccos-rminus
∀[a:{a:ℝ| a ∈ [r(-1), r1]} ]. (arccos(-(a)) = (π - arccos(a)))
Proof
Definitions occuring in Statement : 
arccos: arccos(x), 
pi: π, 
rccint: [l, u], 
i-member: r ∈ I, 
rsub: x - y, 
req: x = y, 
rminus: -(x), 
int-to-real: r(n), 
real: ℝ, 
uall: ∀[x:A]. B[x], 
set: {x:A| B[x]} , 
minus: -n, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
and: P ∧ Q, 
cand: A c∧ B, 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
top: Top, 
uimplies: b supposing a, 
squash: ↓T, 
prop: ℙ, 
uiff: uiff(P;Q), 
req_int_terms: t1 ≡ t2, 
false: False, 
not: ¬A, 
arccos: arccos(x), 
pi: π, 
subtype_rel: A ⊆r B, 
guard: {T}, 
i-member: r ∈ I, 
rccint: [l, u], 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
rminus_wf, 
sq_stable__rleq, 
int-to-real_wf, 
member_rccint_lemma, 
istype-void, 
rleq-implies-rleq, 
rleq_wf, 
real_wf, 
i-member_wf, 
rccint_wf, 
rsub_wf, 
itermSubtract_wf, 
itermConstant_wf, 
itermVar_wf, 
itermMinus_wf, 
req-iff-rsub-is-0, 
real_polynomial_null, 
istype-int, 
real_term_value_sub_lemma, 
real_term_value_const_lemma, 
real_term_value_var_lemma, 
real_term_value_minus_lemma, 
halfpi_wf, 
arcsin_wf, 
subtype_rel_self, 
int-rmul_wf, 
rmul_wf, 
itermMultiply_wf, 
req_functionality, 
rsub_functionality, 
req_weakening, 
arcsin-rminus, 
int-rmul-req, 
real_term_value_mul_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
dependent_set_memberEquality_alt, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
minusEquality, 
natural_numberEquality, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
independent_pairFormation, 
because_Cache, 
productIsType, 
universeIsType, 
setIsType, 
approximateComputation, 
lambdaEquality_alt, 
int_eqEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
setEquality, 
inhabitedIsType
Latex:
\mforall{}[a:\{a:\mBbbR{}|  a  \mmember{}  [r(-1),  r1]\}  ].  (arccos(-(a))  =  (\mpi{}  -  arccos(a)))
Date html generated:
2019_10_31-AM-06_16_43
Last ObjectModification:
2019_05_23-AM-11_45_26
Theory : reals_2
Home
Index