Nuprl Lemma : convex-comb-0-1
∀[x,y:ℝ]. ∀[t:{t:ℝ| t ≠ r0} ].  (convex-comb(x;y;r0;t) = y)
Proof
Definitions occuring in Statement : 
convex-comb: convex-comb(x;y;r;s), 
rneq: x ≠ y, 
req: x = y, 
int-to-real: r(n), 
real: ℝ, 
uall: ∀[x:A]. B[x], 
set: {x:A| B[x]} , 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
prop: ℙ, 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
squash: ↓T, 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
uiff: uiff(P;Q), 
req_int_terms: t1 ≡ t2, 
false: False, 
not: ¬A, 
top: Top, 
convex-comb: convex-comb(x;y;r;s), 
rat_term_to_real: rat_term_to_real(f;t), 
rtermVar: rtermVar(var), 
rat_term_ind: rat_term_ind, 
pi1: fst(t), 
true: True, 
rtermDivide: num "/" denom, 
rtermMultiply: left "*" right, 
pi2: snd(t), 
rdiv: (x/y), 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
sq_stable__req, 
convex-comb_wf1, 
int-to-real_wf, 
rneq_wf, 
radd_wf, 
real_wf, 
itermSubtract_wf, 
itermAdd_wf, 
itermConstant_wf, 
itermVar_wf, 
sq_stable__rneq, 
rneq_functionality, 
req_weakening, 
req-iff-rsub-is-0, 
real_polynomial_null, 
istype-int, 
real_term_value_sub_lemma, 
istype-void, 
real_term_value_add_lemma, 
real_term_value_const_lemma, 
real_term_value_var_lemma, 
rdiv_wf, 
rmul_wf, 
rinv_wf2, 
itermMultiply_wf, 
assert-rat-term-eq2, 
rtermDivide_wf, 
rtermMultiply_wf, 
rtermVar_wf, 
req_functionality, 
req_transitivity, 
rmul_functionality, 
rinv_functionality2, 
rinv-mul-as-rdiv, 
real_term_value_mul_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
closedConclusion, 
natural_numberEquality, 
hypothesis, 
setElimination, 
rename, 
dependent_set_memberEquality_alt, 
universeIsType, 
independent_functionElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
setIsType, 
because_Cache, 
inhabitedIsType, 
dependent_functionElimination, 
independent_isectElimination, 
productElimination, 
approximateComputation, 
lambdaEquality_alt, 
int_eqEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation
Latex:
\mforall{}[x,y:\mBbbR{}].  \mforall{}[t:\{t:\mBbbR{}|  t  \mneq{}  r0\}  ].    (convex-comb(x;y;r0;t)  =  y)
Date html generated:
2019_10_31-AM-06_25_09
Last ObjectModification:
2019_04_02-PM-10_18_37
Theory : reals_2
Home
Index