Nuprl Lemma : integrate_wf
∀[I:Interval]. ∀[a:{a:ℝ| a ∈ I} ]. ∀[f:{f:I ⟶ℝ| ∀x,y:{a:ℝ| a ∈ I} .  ((x = y) ⇒ ((f x) = (f y)))} ].
  (a_∫- f[t] dt ∈ {f:I ⟶ℝ| ∀x,y:{a:ℝ| a ∈ I} .  ((x = y) ⇒ ((f x) = (f y)))} )
Proof
Definitions occuring in Statement : 
integrate: a_∫- f[t] dt, 
rfun: I ⟶ℝ, 
i-member: r ∈ I, 
interval: Interval, 
req: x = y, 
real: ℝ, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
set: {x:A| B[x]} , 
apply: f a
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
all: ∀x:A. B[x], 
prop: ℙ, 
implies: P ⇒ Q, 
rfun: I ⟶ℝ, 
so_apply: x[s], 
integrate: a_∫- f[t] dt, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
top: Top, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
guard: {T}, 
subinterval: I ⊆ J , 
ifun: ifun(f;I), 
real-fun: real-fun(f;a;b), 
i-finite: i-finite(I), 
rccint: [l, u], 
isl: isl(x), 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
true: True, 
cand: A c∧ B
Lemmas referenced : 
set_wf, 
rfun_wf, 
all_wf, 
i-member_wf, 
real_wf, 
req_wf, 
interval_wf, 
rmin-rmax-subinterval, 
integral_wf, 
subtype_rel_sets, 
rccint_wf, 
rmin_wf, 
rmax_wf, 
member_rccint_lemma, 
ifun_wf, 
rccint-icompact, 
rmin-rleq-rmax, 
left_endpoint_rccint_lemma, 
right_endpoint_rccint_lemma, 
left-endpoint_wf, 
right-endpoint_wf, 
rleq_wf, 
integral_functionality_endpoints, 
req_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
because_Cache, 
lambdaFormation, 
setElimination, 
rename, 
functionEquality, 
applyEquality, 
dependent_set_memberEquality, 
functionExtensionality, 
setEquality, 
dependent_functionElimination, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
productElimination, 
independent_pairFormation, 
natural_numberEquality, 
productEquality
Latex:
\mforall{}[I:Interval].  \mforall{}[a:\{a:\mBbbR{}|  a  \mmember{}  I\}  ].  \mforall{}[f:\{f:I  {}\mrightarrow{}\mBbbR{}|  \mforall{}x,y:\{a:\mBbbR{}|  a  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  ((f  x)  =  (f  y)))\}  \000C].
    (a\_\mint{}\msupminus{}  f[t]  dt  \mmember{}  \{f:I  {}\mrightarrow{}\mBbbR{}|  \mforall{}x,y:\{a:\mBbbR{}|  a  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  ((f  x)  =  (f  y)))\}  )
Date html generated:
2016_10_26-PM-00_08_19
Last ObjectModification:
2016_09_12-PM-05_38_55
Theory : reals_2
Home
Index