Nuprl Lemma : absval_elim

[P:ℤ ⟶ ℙ]. (∀x:ℤP[|x|] ⇐⇒ ∀x:ℕP[x])


Proof




Definitions occuring in Statement :  absval: |i| nat: uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  so_apply: x[s] uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q all: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] subtype_rel: A ⊆B nat: rev_implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) uimplies: supposing a less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T not: ¬A false: False bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b sq_stable: SqStable(P) le: A ≤ B
Lemmas referenced :  nat_wf all_wf absval_wf absval_unfold lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf less_than_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base uiff_transitivity assert_wf bnot_wf not_wf assert_of_bnot not_functionality_wrt_uiff sq_stable_from_decidable le_wf decidable__le not-lt-2 add_functionality_wrt_le add-zero le-add-cancel-alt
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  independent_pairFormation lambdaFormation cut introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin intEquality lambdaEquality applyEquality hypothesisEquality setElimination rename Error :functionIsType,  Error :universeIsType,  universeEquality dependent_functionElimination minusEquality natural_numberEquality because_Cache unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination lessCases axiomSqEquality Error :inhabitedIsType,  isect_memberEquality voidElimination voidEquality imageMemberEquality baseClosed imageElimination independent_functionElimination dependent_pairFormation promote_hyp instantiate cumulativity

Latex:
\mforall{}[P:\mBbbZ{}  {}\mrightarrow{}  \mBbbP{}].  (\mforall{}x:\mBbbZ{}.  P[|x|]  \mLeftarrow{}{}\mRightarrow{}  \mforall{}x:\mBbbN{}.  P[x])



Date html generated: 2019_06_20-AM-11_24_35
Last ObjectModification: 2018_09_26-AM-10_58_23

Theory : arithmetic


Home Index