Nuprl Lemma : weakly-safe-seq_wf

[R:ℕ ⟶ ℕ ⟶ ℙ]. ∀[n:ℕ]. ∀[s:ℕn ⟶ ℕ].  (weakly-safe-seq(R;n;s) ∈ ℙ)


Proof




Definitions occuring in Statement :  weakly-safe-seq: weakly-safe-seq(R;n;s) int_seg: {i..j-} nat: uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T weakly-safe-seq: weakly-safe-seq(R;n;s) so_lambda: λ2x.t[x] nat: all: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q implies:  Q false: False prop: uiff: uiff(P;Q) uimplies: supposing a sq_stable: SqStable(P) squash: T subtract: m subtype_rel: A ⊆B top: Top le: A ≤ B less_than': less_than'(a;b) true: True so_apply: x[s]
Lemmas referenced :  int_seg_wf nat_wf seq-add_wf le_wf le-add-cancel add-zero add_functionality_wrt_le add-commutes add-swap add-associates minus-one-mul-top zero-add minus-one-mul minus-add condition-implies-le sq_stable__le not-le-2 false_wf decidable__le homogeneous_wf weakly-infinite_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin lambdaEquality hypothesisEquality dependent_set_memberEquality addEquality setElimination rename natural_numberEquality dependent_functionElimination hypothesis unionElimination independent_pairFormation lambdaFormation voidElimination productElimination independent_functionElimination independent_isectElimination imageMemberEquality baseClosed imageElimination applyEquality isect_memberEquality voidEquality intEquality because_Cache minusEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality

Latex:
\mforall{}[R:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[n:\mBbbN{}].  \mforall{}[s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}].    (weakly-safe-seq(R;n;s)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_13-PM-03_50_33
Last ObjectModification: 2016_01_14-PM-06_59_43

Theory : bar-induction


Home Index