Nuprl Lemma : copath-eta

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w:coW(A;a.B[a])]. ∀[p:copath(a.B[a];w)].
  (0 < copath-length(p)  (copath-cons(copath-hd(p);copath-tl(p)) p ∈ copath(a.B[a];w)))


Proof




Definitions occuring in Statement :  copath-cons: copath-cons(b;x) copath-tl: copath-tl(x) copath-hd: copath-hd(p) copath-length: copath-length(p) copath: copath(a.B[a];w) coW: coW(A;a.B[a]) less_than: a < b uall: [x:A]. B[x] so_apply: x[s] implies:  Q function: x:A ⟶ B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B nat: copath: copath(a.B[a];w) coPath: coPath(a.B[a];w;n) copath-length: copath-length(p) pi1: fst(t) false: False guard: {T} uimplies: supposing a all: x:A. B[x] top: Top or: P ∨ Q sq_type: SQType(T) uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  btrue: tt iff: ⇐⇒ Q not: ¬A rev_implies:  Q bfalse: ff
Lemmas referenced :  less_than_wf copath-length_wf nat_wf copath_wf coW_wf copath-cons-hd-tl eq_int_wf less_than_transitivity1 le_weakening less_than_irreflexivity assert_wf bnot_wf not_wf equal-wf-T-base bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert assert_of_eq_int eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesisEquality sqequalRule lambdaEquality applyEquality setElimination rename dependent_functionElimination axiomEquality because_Cache isect_memberEquality instantiate cumulativity functionEquality universeEquality productElimination independent_pairEquality equalityTransitivity equalitySymmetry independent_isectElimination independent_functionElimination voidElimination intEquality baseClosed voidEquality unionElimination independent_pairFormation impliesFunctionality

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:coW(A;a.B[a])].  \mforall{}[p:copath(a.B[a];w)].
    (0  <  copath-length(p)  {}\mRightarrow{}  (copath-cons(copath-hd(p);copath-tl(p))  =  p))



Date html generated: 2018_07_25-PM-01_40_16
Last ObjectModification: 2018_06_14-AM-10_48_50

Theory : co-recursion


Home Index