Nuprl Lemma : fix_wf_mutual-corec-partial-nat

[k:ℕ]. ∀[F:(ℕk ⟶ Type) ⟶ ℕk ⟶ Type].
  ∀[f:⋂T:ℕk ⟶ Type. ((i:ℕk ⟶ (T i) ⟶ partial(ℕ)) ⟶ i:ℕk ⟶ (F[T] i) ⟶ partial(ℕ))]
    (fix(f) ∈ i:ℕk ⟶ m-corec(T.F[T];i) ⟶ partial(ℕ)) 
  supposing k-Monotone(T.F[T]) ∧ (∀i,j:ℕk. ∀Z:ℕk ⟶ Type.  Continuous(X.F[λi.if (i =z j) then else fi i))


Proof




Definitions occuring in Statement :  m-corec: m-corec(T.F[T];i) k-monotone: k-Monotone(T.F[T]) partial: partial(T) type-continuous: Continuous(T.F[T]) int_seg: {i..j-} nat: ifthenelse: if then else fi  eq_int: (i =z j) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] and: P ∧ Q member: t ∈ T apply: a fix: fix(F) lambda: λx.A[x] isect: x:A. B[x] function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q nat: so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B cand: c∧ B prop: int_seg: {i..j-} all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff uiff: uiff(P;Q) exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False
Lemmas referenced :  fix_wf_mutual-corec-partial1 nat_wf set-value-type le_wf int-value-type nat-mono int_seg_wf partial_wf k-monotone_wf all_wf type-continuous_wf eq_int_wf bool_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin extract_by_obid isectElimination hypothesis independent_isectElimination sqequalRule intEquality lambdaEquality natural_numberEquality hypothesisEquality applyEquality functionExtensionality functionEquality setElimination rename cumulativity universeEquality because_Cache independent_pairFormation isect_memberEquality equalityTransitivity equalitySymmetry axiomEquality isectEquality productEquality instantiate lambdaFormation unionElimination equalityElimination dependent_pairFormation promote_hyp dependent_functionElimination independent_functionElimination voidElimination

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[F:(\mBbbN{}k  {}\mrightarrow{}  Type)  {}\mrightarrow{}  \mBbbN{}k  {}\mrightarrow{}  Type].
    \mforall{}[f:\mcap{}T:\mBbbN{}k  {}\mrightarrow{}  Type.  ((i:\mBbbN{}k  {}\mrightarrow{}  (T  i)  {}\mrightarrow{}  partial(\mBbbN{}))  {}\mrightarrow{}  i:\mBbbN{}k  {}\mrightarrow{}  (F[T]  i)  {}\mrightarrow{}  partial(\mBbbN{}))]
        (fix(f)  \mmember{}  i:\mBbbN{}k  {}\mrightarrow{}  m-corec(T.F[T];i)  {}\mrightarrow{}  partial(\mBbbN{})) 
    supposing  k-Monotone(T.F[T])
    \mwedge{}  (\mforall{}i,j:\mBbbN{}k.  \mforall{}Z:\mBbbN{}k  {}\mrightarrow{}  Type.    Continuous(X.F[\mlambda{}i.if  (i  =\msubz{}  j)  then  X  else  Z  i  fi  ]  i))



Date html generated: 2018_05_21-PM-00_18_20
Last ObjectModification: 2017_10_18-PM-02_49_32

Theory : co-recursion


Home Index