Nuprl Lemma : fix_wf_mutual-corec-partial1

[A:Type]
  (∀[k:ℕ]. ∀[F:(ℕk ⟶ Type) ⟶ ℕk ⟶ Type].
     ∀[f:⋂T:ℕk ⟶ Type. ((i:ℕk ⟶ (T i) ⟶ partial(A)) ⟶ i:ℕk ⟶ (F[T] i) ⟶ partial(A))]
       (fix(f) ∈ i:ℕk ⟶ m-corec(T.F[T];i) ⟶ partial(A)) 
     supposing k-Monotone(T.F[T])
     ∧ (∀i,j:ℕk. ∀Z:ℕk ⟶ Type.  Continuous(X.F[λi.if (i =z j) then else fi i))) supposing 
     (mono(A) and 
     value-type(A))


Proof




Definitions occuring in Statement :  m-corec: m-corec(T.F[T];i) k-monotone: k-Monotone(T.F[T]) partial: partial(T) mono: mono(T) type-continuous: Continuous(T.F[T]) int_seg: {i..j-} nat: value-type: value-type(T) ifthenelse: if then else fi  eq_int: (i =z j) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] and: P ∧ Q member: t ∈ T apply: a fix: fix(F) lambda: λx.A[x] isect: x:A. B[x] function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s] nat: prop: subtype_rel: A ⊆B int_seg: {i..j-} all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff uiff: uiff(P;Q) exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False k-ext: A ≡ B k-subtype: A ⊆ B m-corec: m-corec(T.F[T];i)
Lemmas referenced :  fix-mutual-corec-partial1 int_seg_wf mutual-corec-ext2 partial_wf k-monotone_wf all_wf type-continuous_wf eq_int_wf bool_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int nat_wf mono_wf value-type_wf mutual-corec_wf subtype_rel_dep_function m-corec_wf subtype_rel_self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin extract_by_obid isectElimination hypothesisEquality independent_isectElimination hypothesis sqequalRule lambdaEquality applyEquality functionExtensionality functionEquality cumulativity natural_numberEquality setElimination rename because_Cache universeEquality axiomEquality equalityTransitivity equalitySymmetry isectEquality isect_memberEquality productEquality instantiate lambdaFormation unionElimination equalityElimination dependent_pairFormation promote_hyp dependent_functionElimination independent_functionElimination voidElimination

Latex:
\mforall{}[A:Type]
    (\mforall{}[k:\mBbbN{}].  \mforall{}[F:(\mBbbN{}k  {}\mrightarrow{}  Type)  {}\mrightarrow{}  \mBbbN{}k  {}\mrightarrow{}  Type].
          \mforall{}[f:\mcap{}T:\mBbbN{}k  {}\mrightarrow{}  Type.  ((i:\mBbbN{}k  {}\mrightarrow{}  (T  i)  {}\mrightarrow{}  partial(A))  {}\mrightarrow{}  i:\mBbbN{}k  {}\mrightarrow{}  (F[T]  i)  {}\mrightarrow{}  partial(A))]
              (fix(f)  \mmember{}  i:\mBbbN{}k  {}\mrightarrow{}  m-corec(T.F[T];i)  {}\mrightarrow{}  partial(A)) 
          supposing  k-Monotone(T.F[T])
          \mwedge{}  (\mforall{}i,j:\mBbbN{}k.  \mforall{}Z:\mBbbN{}k  {}\mrightarrow{}  Type.    Continuous(X.F[\mlambda{}i.if  (i  =\msubz{}  j)  then  X  else  Z  i  fi  ]  i)))  supposing 
          (mono(A)  and 
          value-type(A))



Date html generated: 2018_05_21-PM-00_18_15
Last ObjectModification: 2017_10_18-PM-02_48_02

Theory : co-recursion


Home Index