Nuprl Lemma : cantor2baire-aux-pos
∀[a:ℕ ⟶ 𝔹]. ∀[n:ℕ].
  cantor2baire-aux(a;n) ~ if a n then cantor2baire-aux(a;n-1) + 1 else cantor2baire-aux(a;n-1) fi  supposing 0 < n
Proof
Definitions occuring in Statement : 
cantor2baire-aux: cantor2baire-aux(a;n)
, 
nat-pred: n-1
, 
nat: ℕ
, 
ifthenelse: if b then t else f fi 
, 
bool: 𝔹
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
cantor2baire-aux: cantor2baire-aux(a;n)
, 
nat: ℕ
, 
top: Top
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
ifthenelse: if b then t else f fi 
, 
ge: i ≥ j 
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
prop: ℙ
, 
bfalse: ff
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
squash: ↓T
, 
decidable: Dec(P)
, 
subtype_rel: A ⊆r B
, 
true: True
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
primrec-unroll, 
istype-void, 
subtract-add-cancel, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
int_subtype_base, 
equal_wf, 
cantor2baire-aux_wf, 
subtract_wf, 
decidable__le, 
intformnot_wf, 
intformle_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_subtract_lemma, 
le_wf, 
add_functionality_wrt_eq, 
nat-pred_wf, 
nat-pred-as-sub, 
iff_weakening_equal, 
nat_wf, 
set_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
Error :isect_memberEquality_alt, 
voidElimination, 
natural_numberEquality, 
Error :inhabitedIsType, 
Error :lambdaFormation_alt, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
hypothesisEquality, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
independent_pairFormation, 
Error :universeIsType, 
Error :equalityIsType1, 
promote_hyp, 
instantiate, 
cumulativity, 
applyEquality, 
imageElimination, 
universeEquality, 
intEquality, 
addEquality, 
Error :dependent_set_memberEquality_alt, 
Error :functionIsType, 
imageMemberEquality, 
baseClosed, 
axiomSqEquality
Latex:
\mforall{}[a:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[n:\mBbbN{}].
    cantor2baire-aux(a;n)  \msim{}  if  a  n  then  cantor2baire-aux(a;n-1)  +  1  else  cantor2baire-aux(a;n-1)  fi   
    supposing  0  <  n
Date html generated:
2019_06_20-PM-03_07_37
Last ObjectModification:
2018_10_03-PM-00_24_16
Theory : continuity
Home
Index