Nuprl Lemma : cantor2baire-aux-pos

[a:ℕ ⟶ 𝔹]. ∀[n:ℕ].
  cantor2baire-aux(a;n) if then cantor2baire-aux(a;n-1) else cantor2baire-aux(a;n-1) fi  supposing 0 < n


Proof




Definitions occuring in Statement :  cantor2baire-aux: cantor2baire-aux(a;n) nat-pred: n-1 nat: ifthenelse: if then else fi  bool: 𝔹 less_than: a < b uimplies: supposing a uall: [x:A]. B[x] apply: a function: x:A ⟶ B[x] add: m natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a cantor2baire-aux: cantor2baire-aux(a;n) nat: top: Top all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False prop: bfalse: ff or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q squash: T decidable: Dec(P) subtype_rel: A ⊆B true: True so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  primrec-unroll istype-void subtract-add-cancel lt_int_wf eqtt_to_assert assert_of_lt_int nat_properties full-omega-unsat intformand_wf intformless_wf itermVar_wf itermConstant_wf istype-int int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf int_subtype_base equal_wf cantor2baire-aux_wf subtract_wf decidable__le intformnot_wf intformle_wf itermSubtract_wf int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_subtract_lemma le_wf add_functionality_wrt_eq nat-pred_wf nat-pred-as-sub iff_weakening_equal nat_wf set_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename because_Cache hypothesis Error :isect_memberEquality_alt,  voidElimination natural_numberEquality Error :inhabitedIsType,  Error :lambdaFormation_alt,  unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination hypothesisEquality approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination independent_pairFormation Error :universeIsType,  Error :equalityIsType1,  promote_hyp instantiate cumulativity applyEquality imageElimination universeEquality intEquality addEquality Error :dependent_set_memberEquality_alt,  Error :functionIsType,  imageMemberEquality baseClosed axiomSqEquality

Latex:
\mforall{}[a:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[n:\mBbbN{}].
    cantor2baire-aux(a;n)  \msim{}  if  a  n  then  cantor2baire-aux(a;n-1)  +  1  else  cantor2baire-aux(a;n-1)  fi   
    supposing  0  <  n



Date html generated: 2019_06_20-PM-03_07_37
Last ObjectModification: 2018_10_03-PM-00_24_16

Theory : continuity


Home Index