Nuprl Lemma : increasing-baire-diff-from

a:ℕ ⟶ ℕ. ∀n:ℕ.  (increasing-sequence(a)  increasing-sequence(baire-diff-from(a;n)))


Proof




Definitions occuring in Statement :  baire-diff-from: baire-diff-from(a;k) increasing-sequence: increasing-sequence(a) nat: all: x:A. B[x] implies:  Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  less_than': less_than'(a;b) le: A ≤ B nat-pred: n-1 so_apply: x[s] so_lambda: λ2x.t[x] nequal: a ≠ b ∈  assert: b bnot: ¬bb sq_type: SQType(T) bfalse: ff guard: {T} prop: top: Top not: ¬A false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) decidable: Dec(P) ge: i ≥  or: P ∨ Q subtype_rel: A ⊆B ifthenelse: if then else fi  uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 nat: uall: [x:A]. B[x] member: t ∈ T baire-diff-from: baire-diff-from(a;k) increasing-sequence: increasing-sequence(a) implies:  Q all: x:A. B[x]
Lemmas referenced :  false_wf subtract_wf add_nat_wf add-subtract-cancel int_subtype_base set_subtype_base increasing-sequence_wf neg_assert_of_eq_int assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal eqff_to_assert equal_wf le_wf int_formula_prop_le_lemma int_formula_prop_and_lemma intformle_wf intformand_wf decidable__le int_formula_prop_wf decidable__equal_int int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma itermConstant_wf itermVar_wf itermAdd_wf intformeq_wf intformnot_wf satisfiable-full-omega-tt decidable__equal_nat nat_properties assert_of_eq_int nat-pred_wf nat_wf eq_int_wf assert_of_le_int eqtt_to_assert bool_wf le_int_wf
Rules used in proof :  inrFormation functionEquality cumulativity int_eqReduceFalseSq instantiate promote_hyp independent_pairFormation applyLambdaEquality dependent_set_memberEquality computeAll independent_functionElimination voidEquality voidElimination isect_memberEquality intEquality int_eqEquality lambdaEquality dependent_pairFormation dependent_functionElimination inlFormation int_eqReduceTrueSq because_Cache functionExtensionality applyEquality independent_isectElimination productElimination equalitySymmetry equalityTransitivity equalityElimination unionElimination natural_numberEquality addEquality hypothesis hypothesisEquality rename setElimination thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut sqequalRule lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}a:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \mforall{}n:\mBbbN{}.    (increasing-sequence(a)  {}\mRightarrow{}  increasing-sequence(baire-diff-from(a;n)))



Date html generated: 2017_04_21-AM-11_23_56
Last ObjectModification: 2017_04_20-PM-05_55_47

Theory : continuity


Home Index