Nuprl Lemma : seq-append0-left
∀[t:Top]. ∀[m:ℕ]. ∀[f:ℕm ⟶ ℕ].  (seq-append(0;m;t;f) = f ∈ (ℕm ⟶ ℕ))
Proof
Definitions occuring in Statement : 
seq-append: seq-append(n;m;s1;s2), 
int_seg: {i..j-}, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
top: Top, 
function: x:A ⟶ B[x], 
natural_number: $n, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
seq-append: seq-append(n;m;s1;s2), 
int_seg: {i..j-}, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
less_than: a < b, 
less_than': less_than'(a;b), 
top: Top, 
true: True, 
squash: ↓T, 
not: ¬A, 
false: False, 
prop: ℙ, 
guard: {T}, 
nat: ℕ, 
ge: i ≥ j , 
lelt: i ≤ j < k, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
le: A ≤ B, 
subtype_rel: A ⊆r B, 
decidable: Dec(P), 
or: P ∨ Q, 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
subtract: n - m
Lemmas referenced : 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
top_wf, 
less_than_wf, 
int_seg_properties, 
nat_properties, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
int_seg_wf, 
lelt_wf, 
le_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
minus-zero, 
add-zero, 
intformnot_wf, 
itermAdd_wf, 
int_formula_prop_not_lemma, 
int_term_value_add_lemma, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
functionExtensionality, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
because_Cache, 
lessCases, 
sqequalAxiom, 
isect_memberEquality, 
independent_pairFormation, 
voidElimination, 
voidEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
independent_functionElimination, 
dependent_functionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
computeAll, 
applyEquality, 
dependent_set_memberEquality, 
promote_hyp, 
instantiate, 
cumulativity, 
addEquality, 
functionEquality, 
axiomEquality
Latex:
\mforall{}[t:Top].  \mforall{}[m:\mBbbN{}].  \mforall{}[f:\mBbbN{}m  {}\mrightarrow{}  \mBbbN{}].    (seq-append(0;m;t;f)  =  f)
Date html generated:
2017_04_17-AM-10_02_51
Last ObjectModification:
2017_02_27-PM-05_54_24
Theory : continuity
Home
Index