Nuprl Lemma : strong-continuity2-implies-weak-skolem-cantor
∀F:(ℕ ⟶ 𝔹) ⟶ 𝔹. ⇃(∃M:(ℕ ⟶ 𝔹) ⟶ ℕ. ∀f,g:ℕ ⟶ 𝔹.  ((f = g ∈ (ℕM f ⟶ 𝔹)) ⇒ F f = F g))
Proof
Definitions occuring in Statement : 
quotient: x,y:A//B[x; y], 
int_seg: {i..j-}, 
nat: ℕ, 
bool: 𝔹, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
true: True, 
apply: f a, 
function: x:A ⟶ B[x], 
natural_number: $n, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
exists: ∃x:A. B[x], 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
nat: ℕ, 
so_lambda: λ2x.t[x], 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
so_apply: x[s], 
pi1: fst(t), 
isl: isl(x), 
sq_type: SQType(T), 
guard: {T}, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
true: True, 
iff: P ⇐⇒ Q, 
outl: outl(x), 
rev_implies: P ⇐ Q, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
cand: A c∧ B, 
quotient: x,y:A//B[x; y], 
squash: ↓T
Lemmas referenced : 
nat_wf, 
bool_wf, 
strong-continuity2-no-inner-squash-cantor4, 
exists_wf, 
int_seg_wf, 
unit_wf2, 
all_wf, 
equal_wf, 
subtype_rel_function, 
int_seg_subtype_nat, 
false_wf, 
subtype_rel_self, 
isect_wf, 
assert_wf, 
isl_wf, 
pi1_wf, 
and_wf, 
btrue_wf, 
subtype_base_sq, 
bool_subtype_base, 
iff_imp_equal_bool, 
outl_wf, 
assert_elim, 
true_wf, 
quotient_wf, 
equiv_rel_true, 
quotient-member-eq, 
equal-wf-base, 
member_wf, 
squash_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
functionEquality, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
isectElimination, 
natural_numberEquality, 
setElimination, 
rename, 
unionEquality, 
sqequalRule, 
lambdaEquality, 
productEquality, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
independent_pairFormation, 
inlEquality, 
dependent_pairFormation, 
functionExtensionality, 
independent_pairEquality, 
dependent_pairEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
dependent_set_memberEquality, 
applyLambdaEquality, 
instantiate, 
cumulativity, 
promote_hyp, 
hyp_replacement, 
addLevel, 
levelHypothesis, 
pointwiseFunctionality, 
pertypeElimination, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbB{}.  \00D9(\mexists{}M:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbN{}.  \mforall{}f,g:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.    ((f  =  g)  {}\mRightarrow{}  F  f  =  F  g))
Date html generated:
2018_05_21-PM-01_19_18
Last ObjectModification:
2018_05_19-AM-06_33_00
Theory : continuity
Home
Index