Nuprl Lemma : strong-continuity2-implies-weak-skolem-cantor

F:(ℕ ⟶ 𝔹) ⟶ 𝔹. ⇃(∃M:(ℕ ⟶ 𝔹) ⟶ ℕ. ∀f,g:ℕ ⟶ 𝔹.  ((f g ∈ (ℕf ⟶ 𝔹))  g))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] int_seg: {i..j-} nat: bool: 𝔹 all: x:A. B[x] exists: x:A. B[x] implies:  Q true: True apply: a function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q exists: x:A. B[x] prop: uall: [x:A]. B[x] nat: so_lambda: λ2x.t[x] and: P ∧ Q subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A so_apply: x[s] pi1: fst(t) isl: isl(x) sq_type: SQType(T) guard: {T} assert: b ifthenelse: if then else fi  btrue: tt true: True iff: ⇐⇒ Q outl: outl(x) rev_implies:  Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] cand: c∧ B quotient: x,y:A//B[x; y] squash: T
Lemmas referenced :  nat_wf bool_wf strong-continuity2-no-inner-squash-cantor4 exists_wf int_seg_wf unit_wf2 all_wf equal_wf subtype_rel_function int_seg_subtype_nat false_wf subtype_rel_self isect_wf assert_wf isl_wf pi1_wf and_wf btrue_wf subtype_base_sq bool_subtype_base iff_imp_equal_bool outl_wf assert_elim true_wf quotient_wf equiv_rel_true quotient-member-eq equal-wf-base member_wf squash_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation functionEquality cut introduction extract_by_obid hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination isectElimination natural_numberEquality setElimination rename unionEquality sqequalRule lambdaEquality productEquality applyEquality because_Cache independent_isectElimination independent_pairFormation inlEquality dependent_pairFormation functionExtensionality independent_pairEquality dependent_pairEquality equalityTransitivity equalitySymmetry independent_functionElimination dependent_set_memberEquality applyLambdaEquality instantiate cumulativity promote_hyp hyp_replacement addLevel levelHypothesis pointwiseFunctionality pertypeElimination imageElimination universeEquality imageMemberEquality baseClosed

Latex:
\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbB{}.  \00D9(\mexists{}M:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbN{}.  \mforall{}f,g:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.    ((f  =  g)  {}\mRightarrow{}  F  f  =  F  g))



Date html generated: 2018_05_21-PM-01_19_18
Last ObjectModification: 2018_05_19-AM-06_33_00

Theory : continuity


Home Index