Nuprl Lemma : fun_exp-id

[n:ℕ]. ∀[x:Top].  i.i^n x)


Proof




Definitions occuring in Statement :  fun_exp: f^n nat: uall: [x:A]. B[x] top: Top apply: a lambda: λx.A[x] sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  guard: {T} uimplies: supposing a prop: all: x:A. B[x] top: Top decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q uiff: uiff(P;Q) subtract: m subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) true: True
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf top_wf fun_exp0_lemma decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel nat_wf subtract-add-cancel fun_exp_add1-sq not-le-2 le_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination independent_functionElimination voidElimination sqequalRule lambdaEquality dependent_functionElimination isect_memberEquality sqequalAxiom voidEquality unionElimination independent_pairFormation productElimination addEquality applyEquality intEquality minusEquality because_Cache dependent_set_memberEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x:Top].    (\mlambda{}i.i\^{}n  x  \msim{}  x)



Date html generated: 2016_05_13-PM-04_07_17
Last ObjectModification: 2015_12_26-AM-11_04_12

Theory : fun_1


Home Index