Nuprl Lemma : free-from-atom-int

[a:Atom1]. ∀[n:ℤ].  a#n:ℤ


Proof




Definitions occuring in Statement :  free-from-atom: a#x:T atom: Atom$n uall: [x:A]. B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] decidable: Dec(P) or: P ∨ Q nat: uimplies: supposing a prop: uiff: uiff(P;Q) and: P ∧ Q subtype_rel: A ⊆B top: Top subtract: m le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q nat_plus: + less_than: a < b squash: T true: True gt: i > j
Lemmas referenced :  not-gt-2 free-from-atom-subtype less_than_wf omega-shadow add-swap add-associates false_wf less-iff-le zero-mul add-mul-special add-commutes zero-add one-mul add-zero minus-zero minus-one-mul-top le_reflexive subtract_wf add_functionality_wrt_le not-lt-2 le_wf minus-one-mul le_weakening2 free-from-atom-nat nat_wf minus-minus decidable__lt
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality natural_numberEquality hypothesis unionElimination freeFromAtomAxiom intEquality sqequalRule isect_memberEquality isectElimination because_Cache atomnEquality freeFromAtomApplication freeFromAtomTriviality lambdaEquality minusEquality setElimination rename dependent_set_memberEquality independent_isectElimination productElimination multiplyEquality applyEquality voidElimination voidEquality addEquality independent_pairFormation lambdaFormation imageMemberEquality baseClosed independent_functionElimination

Latex:
\mforall{}[a:Atom1].  \mforall{}[n:\mBbbZ{}].    a\#n:\mBbbZ{}



Date html generated: 2016_05_13-PM-04_03_55
Last ObjectModification: 2016_01_14-PM-07_24_26

Theory : int_1


Home Index