Nuprl Lemma : imax-wf-partial-nat
∀[x,y:partial(ℕ)].  (imax(x;y) ∈ partial(ℕ))
Proof
Definitions occuring in Statement : 
partial: partial(T)
, 
imax: imax(a;b)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
imax: imax(a;b)
, 
has-value: (a)↓
, 
squash: ↓T
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
Lemmas referenced : 
partial-base, 
subtype_rel_partial, 
nat_wf, 
base_wf, 
set_subtype_base, 
le_wf, 
istype-int, 
int_subtype_base, 
subtype_rel_transitivity, 
partial_wf, 
set-value-type, 
int-value-type, 
inclusion-partial, 
imax_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
is-exception_wf, 
not_wf, 
has-value_wf_base, 
apply-2-partial, 
termination, 
exception-not-value, 
le_int_wf, 
eqtt_to_assert, 
assert_of_le_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
bool_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
independent_isectElimination, 
sqequalRule, 
intEquality, 
Error :lambdaEquality_alt, 
natural_numberEquality, 
hypothesisEquality, 
because_Cache, 
independent_pairFormation, 
baseClosed, 
Error :dependent_set_memberEquality_alt, 
setElimination, 
rename, 
Error :inhabitedIsType, 
Error :lambdaFormation_alt, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
dependent_functionElimination, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
Error :universeIsType, 
Error :equalityIsType1, 
productElimination, 
baseApply, 
closedConclusion, 
applyEquality, 
Error :productIsType, 
callbyvalueCallbyvalue, 
callbyvalueReduce, 
callbyvalueExceptionCases, 
imageElimination, 
imageMemberEquality, 
equalityElimination, 
Error :equalityIsType2, 
promote_hyp, 
instantiate, 
cumulativity
Latex:
\mforall{}[x,y:partial(\mBbbN{})].    (imax(x;y)  \mmember{}  partial(\mBbbN{}))
Date html generated:
2019_06_20-PM-01_13_43
Last ObjectModification:
2018_10_07-AM-00_11_31
Theory : int_2
Home
Index