Nuprl Lemma : before_last
∀[T:Type]. ∀L:T List. ∀x:T.  ((x ∈ L) ⇒ x before last(L) ∈ L supposing ¬(x = last(L) ∈ T))
Proof
Definitions occuring in Statement : 
l_before: x before y ∈ l, 
last: last(L), 
l_member: (x ∈ l), 
list: T List, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
implies: P ⇒ Q, 
prop: ℙ, 
uimplies: b supposing a, 
not: ¬A, 
false: False, 
so_apply: x[s], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
top: Top, 
or: P ∨ Q, 
l_before: x before y ∈ l, 
rev_implies: P ⇐ Q, 
uiff: uiff(P;Q), 
last: last(L), 
select: L[n], 
cons: [a / b], 
subtract: n - m, 
length: ||as||, 
list_ind: list_ind, 
nil: [], 
it: ⋅, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
bfalse: ff, 
true: True, 
squash: ↓T, 
subtype_rel: A ⊆r B, 
guard: {T}
Lemmas referenced : 
list_induction, 
all_wf, 
l_member_wf, 
not_wf, 
equal_wf, 
last_wf, 
assert_elim, 
null_wf, 
member-implies-null-eq-bfalse, 
btrue_neq_bfalse, 
assert_wf, 
l_before_wf, 
list_wf, 
nil_member, 
nil_wf, 
cons_wf, 
null_cons_lemma, 
istype-void, 
bfalse_wf, 
cons_member, 
cons_sublist_cons, 
assert_of_null, 
list-cases, 
null_nil_lemma, 
btrue_wf, 
product_subtype_list, 
false_wf, 
squash_wf, 
true_wf, 
last_cons, 
iff_weakening_equal, 
sublist_wf, 
subtype_rel_self, 
member_iff_sublist, 
last_member
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :lambdaFormation_alt, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
Error :lambdaEquality_alt, 
cumulativity, 
functionEquality, 
because_Cache, 
hypothesis, 
isectEquality, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
voidElimination, 
Error :universeIsType, 
rename, 
Error :functionIsType, 
Error :inhabitedIsType, 
Error :isectIsType, 
dependent_functionElimination, 
universeEquality, 
productElimination, 
Error :equalityIsType1, 
Error :isect_memberEquality_alt, 
Error :unionIsType, 
unionElimination, 
hyp_replacement, 
applyLambdaEquality, 
promote_hyp, 
hypothesis_subsumption, 
natural_numberEquality, 
applyEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
Error :inlFormation_alt, 
instantiate, 
independent_pairFormation, 
Error :inrFormation_alt, 
Error :productIsType
Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}x:T.    ((x  \mmember{}  L)  {}\mRightarrow{}  x  before  last(L)  \mmember{}  L  supposing  \mneg{}(x  =  last(L)))
Date html generated:
2019_06_20-PM-01_23_37
Last ObjectModification:
2018_09_29-PM-00_04_11
Theory : list_1
Home
Index