Nuprl Lemma : decidable__squash-list-match

[A,B:Type]. ∀[R:A ⟶ B ⟶ ℙ].
  ((∀a:A. ∀b:B.  Dec(R[a;b]))  (∀as:A List. ∀bs:B List.  Dec(↓list-match(as;bs;a,b.R[a;b]))))


Proof




Definitions occuring in Statement :  list-match: list-match(L1;L2;a,b.R[a; b]) list: List decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] squash: T implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q so_lambda: λ2x.t[x] so_apply: x[s1;s2] so_apply: x[s] all: x:A. B[x] prop: decidable: Dec(P) or: P ∨ Q squash: T so_lambda: λ2y.t[x; y] guard: {T} not: ¬A false: False list-match-aux: list-match-aux(L1;L2;used;a,b.R[a; b]) sq_exists: x:A [B[x]] list-match: list-match(L1;L2;a,b.R[a; b]) and: P ∧ Q cand: c∧ B int_seg: {i..j-} uimplies: supposing a lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top less_than: a < b subtype_rel: A ⊆B ge: i ≥  nat:
Lemmas referenced :  decidable__squash-list-match-aux-ext all_wf decidable_wf nil_wf not_wf squash_wf list-match_wf list_wf int_seg_wf length_wf inject_wf select_wf int_seg_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma non_neg_length lelt_wf length_wf_nat nat_properties null_nil_lemma btrue_wf member-implies-null-eq-bfalse btrue_neq_bfalse l_member_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation independent_functionElimination sqequalRule lambdaEquality applyEquality functionEquality cumulativity universeEquality dependent_functionElimination intEquality unionElimination inlFormation imageElimination imageMemberEquality baseClosed inrFormation voidElimination because_Cache setElimination rename dependent_set_memberFormation productElimination independent_pairFormation natural_numberEquality productEquality functionExtensionality independent_isectElimination approximateComputation dependent_pairFormation int_eqEquality isect_memberEquality voidEquality dependent_set_memberEquality equalityTransitivity equalitySymmetry applyLambdaEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[R:A  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}a:A.  \mforall{}b:B.    Dec(R[a;b]))  {}\mRightarrow{}  (\mforall{}as:A  List.  \mforall{}bs:B  List.    Dec(\mdownarrow{}list-match(as;bs;a,b.R[a;b]))))



Date html generated: 2018_05_21-PM-00_48_47
Last ObjectModification: 2018_05_19-AM-06_51_46

Theory : list_1


Home Index