Nuprl Lemma : decidable__squash-list-match
∀[A,B:Type]. ∀[R:A ⟶ B ⟶ ℙ].
  ((∀a:A. ∀b:B.  Dec(R[a;b])) 
⇒ (∀as:A List. ∀bs:B List.  Dec(↓list-match(as;bs;a,b.R[a;b]))))
Proof
Definitions occuring in Statement : 
list-match: list-match(L1;L2;a,b.R[a; b])
, 
list: T List
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
squash: ↓T
, 
so_lambda: λ2x y.t[x; y]
, 
guard: {T}
, 
not: ¬A
, 
false: False
, 
list-match-aux: list-match-aux(L1;L2;used;a,b.R[a; b])
, 
sq_exists: ∃x:A [B[x]]
, 
list-match: list-match(L1;L2;a,b.R[a; b])
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
lelt: i ≤ j < k
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
less_than: a < b
, 
subtype_rel: A ⊆r B
, 
ge: i ≥ j 
, 
nat: ℕ
Lemmas referenced : 
decidable__squash-list-match-aux-ext, 
all_wf, 
decidable_wf, 
nil_wf, 
not_wf, 
squash_wf, 
list-match_wf, 
list_wf, 
int_seg_wf, 
length_wf, 
inject_wf, 
select_wf, 
int_seg_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
non_neg_length, 
lelt_wf, 
length_wf_nat, 
nat_properties, 
null_nil_lemma, 
btrue_wf, 
member-implies-null-eq-bfalse, 
btrue_neq_bfalse, 
l_member_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaFormation, 
independent_functionElimination, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionEquality, 
cumulativity, 
universeEquality, 
dependent_functionElimination, 
intEquality, 
unionElimination, 
inlFormation, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
inrFormation, 
voidElimination, 
because_Cache, 
setElimination, 
rename, 
dependent_set_memberFormation, 
productElimination, 
independent_pairFormation, 
natural_numberEquality, 
productEquality, 
functionExtensionality, 
independent_isectElimination, 
approximateComputation, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidEquality, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[R:A  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}a:A.  \mforall{}b:B.    Dec(R[a;b]))  {}\mRightarrow{}  (\mforall{}as:A  List.  \mforall{}bs:B  List.    Dec(\mdownarrow{}list-match(as;bs;a,b.R[a;b]))))
Date html generated:
2018_05_21-PM-00_48_47
Last ObjectModification:
2018_05_19-AM-06_51_46
Theory : list_1
Home
Index