Nuprl Lemma : hd-append
∀[T:Type]. ∀[L1:T List+]. ∀[L2:T List].  (hd(L1 @ L2) = hd(L1) ∈ T)
Proof
Definitions occuring in Statement : 
listp: A List+, 
hd: hd(l), 
append: as @ bs, 
list: T List, 
uall: ∀[x:A]. B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
listp: A List+, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
top: Top, 
squash: ↓T, 
prop: ℙ, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
ge: i ≥ j , 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
uiff: uiff(P;Q), 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
sq_type: SQType(T), 
select: L[n]
Lemmas referenced : 
select-as-hd, 
append_wf, 
subtype_rel_list, 
top_wf, 
listp_properties, 
equal_wf, 
squash_wf, 
true_wf, 
select_append, 
false_wf, 
non_neg_length, 
decidable__lt, 
length_wf, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
lelt_wf, 
select_wf, 
iff_weakening_equal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
iff_imp_equal_bool, 
lt_int_wf, 
btrue_wf, 
less_than_wf, 
assert_of_lt_int, 
assert_wf, 
iff_wf, 
list_wf, 
listp_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
applyEquality, 
independent_isectElimination, 
lambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
lambdaFormation, 
dependent_functionElimination, 
addEquality, 
unionElimination, 
productElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
computeAll, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
independent_functionElimination, 
instantiate, 
addLevel, 
impliesFunctionality, 
axiomEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L1:T  List\msupplus{}].  \mforall{}[L2:T  List].    (hd(L1  @  L2)  =  hd(L1))
Date html generated:
2017_04_17-AM-08_48_09
Last ObjectModification:
2017_02_27-PM-05_06_53
Theory : list_1
Home
Index