Nuprl Lemma : length-interpolate-list
∀[T:Type]
  ∀[f:T ⟶ T ⟶ T]. ∀[L:T List].  (||interpolate-list(x,y.f[x;y];L)|| = if null(L) then 0 else (2 * ||L||) - 1 fi  ∈ ℤ) 
  supposing value-type(T)
Proof
Definitions occuring in Statement : 
interpolate-list: interpolate-list(x,y.f[x; y];L)
, 
length: ||as||
, 
null: null(as)
, 
list: T List
, 
value-type: value-type(T)
, 
ifthenelse: if b then t else f fi 
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
function: x:A ⟶ B[x]
, 
multiply: n * m
, 
subtract: n - m
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
or: P ∨ Q
, 
interpolate-list: interpolate-list(x,y.f[x; y];L)
, 
nil: []
, 
it: ⋅
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
cons: [a / b]
, 
decidable: Dec(P)
, 
colength: colength(L)
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
bfalse: ff
, 
subtract: n - m
, 
has-value: (a)↓
, 
uiff: uiff(P;Q)
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
list-cases, 
null_nil_lemma, 
length_of_nil_lemma, 
product_subtype_list, 
colength-cons-not-zero, 
colength_wf_list, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
istype-le, 
subtract-1-ge-0, 
subtype_base_sq, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
set_subtype_base, 
int_subtype_base, 
spread_cons_lemma, 
decidable__equal_int, 
subtract_wf, 
itermSubtract_wf, 
itermAdd_wf, 
int_term_value_subtract_lemma, 
int_term_value_add_lemma, 
le_wf, 
null_cons_lemma, 
length_of_cons_lemma, 
value-type-has-value, 
list_wf, 
list-value-type, 
interpolate-list_wf, 
cons_wf, 
subtract-is-int-iff, 
multiply-is-int-iff, 
add-is-int-iff, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
false_wf, 
istype-nat, 
value-type_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
Error :lambdaFormation_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
Error :isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
Error :universeIsType, 
axiomEquality, 
Error :functionIsTypeImplies, 
Error :inhabitedIsType, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
Error :equalityIstype, 
because_Cache, 
Error :dependent_set_memberEquality_alt, 
instantiate, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
imageElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
intEquality, 
sqequalBase, 
callbyvalueReduce, 
pointwiseFunctionality, 
Error :isectIsTypeImplies, 
Error :functionIsType, 
universeEquality
Latex:
\mforall{}[T:Type]
    \mforall{}[f:T  {}\mrightarrow{}  T  {}\mrightarrow{}  T].  \mforall{}[L:T  List].
        (||interpolate-list(x,y.f[x;y];L)||  =  if  null(L)  then  0  else  (2  *  ||L||)  -  1  fi  ) 
    supposing  value-type(T)
Date html generated:
2019_06_20-PM-01_49_48
Last ObjectModification:
2019_03_06-AM-10_29_47
Theory : list_1
Home
Index