Nuprl Lemma : length-interpolate-list

[T:Type]
  ∀[f:T ⟶ T ⟶ T]. ∀[L:T List].  (||interpolate-list(x,y.f[x;y];L)|| if null(L) then else (2 ||L||) fi  ∈ ℤ
  supposing value-type(T)


Proof




Definitions occuring in Statement :  interpolate-list: interpolate-list(x,y.f[x; y];L) length: ||as|| null: null(as) list: List value-type: value-type(T) ifthenelse: if then else fi  uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s1;s2] function: x:A ⟶ B[x] multiply: m subtract: m natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: or: P ∨ Q interpolate-list: interpolate-list(x,y.f[x; y];L) nil: [] it: ifthenelse: if then else fi  btrue: tt cons: [a b] decidable: Dec(P) colength: colength(L) guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] subtype_rel: A ⊆B bfalse: ff subtract: m has-value: (a)↓ uiff: uiff(P;Q)
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than list-cases null_nil_lemma length_of_nil_lemma product_subtype_list colength-cons-not-zero colength_wf_list decidable__le intformnot_wf int_formula_prop_not_lemma istype-le subtract-1-ge-0 subtype_base_sq intformeq_wf int_formula_prop_eq_lemma set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf itermSubtract_wf itermAdd_wf int_term_value_subtract_lemma int_term_value_add_lemma le_wf null_cons_lemma length_of_cons_lemma value-type-has-value list_wf list-value-type interpolate-list_wf cons_wf subtract-is-int-iff multiply-is-int-iff add-is-int-iff itermMultiply_wf int_term_value_mul_lemma false_wf istype-nat value-type_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut thin Error :lambdaFormation_alt,  extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination sqequalRule independent_pairFormation Error :universeIsType,  axiomEquality Error :functionIsTypeImplies,  Error :inhabitedIsType,  unionElimination promote_hyp hypothesis_subsumption productElimination Error :equalityIstype,  because_Cache Error :dependent_set_memberEquality_alt,  instantiate equalityTransitivity equalitySymmetry applyLambdaEquality imageElimination baseApply closedConclusion baseClosed applyEquality intEquality sqequalBase callbyvalueReduce pointwiseFunctionality Error :isectIsTypeImplies,  Error :functionIsType,  universeEquality

Latex:
\mforall{}[T:Type]
    \mforall{}[f:T  {}\mrightarrow{}  T  {}\mrightarrow{}  T].  \mforall{}[L:T  List].
        (||interpolate-list(x,y.f[x;y];L)||  =  if  null(L)  then  0  else  (2  *  ||L||)  -  1  fi  ) 
    supposing  value-type(T)



Date html generated: 2019_06_20-PM-01_49_48
Last ObjectModification: 2019_03_06-AM-10_29_47

Theory : list_1


Home Index