Nuprl Lemma : member-filter-witness_wf

[T:Type]. ∀[P:T ⟶ 𝔹]. ∀[L:T List]. ∀[x:{x:T| ↑(P x)} ].  (member-filter-witness(P;L;x) ∈ (x ∈ L)  (x ∈ filter(P;L)))


Proof




Definitions occuring in Statement :  member-filter-witness: member-filter-witness(P;L;x) l_member: (x ∈ l) filter: filter(P;l) list: List assert: b bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] implies:  Q member: t ∈ T set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T member-filter-witness: member-filter-witness(P;L;x) implies:  Q l_member: (x ∈ l) exists: x:A. B[x] cand: c∧ B prop: int_seg: {i..j-} nat: lelt: i ≤ j < k and: P ∧ Q ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top sq_type: SQType(T) guard: {T} assert: b ifthenelse: if then else fi  btrue: tt true: True less_than: a < b squash: T subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] istype: istype(T) le: A ≤ B less_than': less_than'(a;b) it:
Lemmas referenced :  assert_wf list_wf bool_wf filter-index_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf le_wf less_than_wf length_wf assert_elim subtype_base_sq bool_subtype_base select_wf int_seg_properties decidable__lt intformless_wf int_formula_prop_less_lemma int_seg_subtype_nat filter_wf5 subtype_rel_dep_function l_member_wf istype-false member-less_than filter_type subtype_rel_self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut Error :lambdaEquality_alt,  sqequalHypSubstitution productElimination thin sqequalRule hypothesis axiomEquality equalityTransitivity equalitySymmetry Error :setIsType,  Error :universeIsType,  hypothesisEquality extract_by_obid isectElimination applyEquality Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  Error :inhabitedIsType,  Error :functionIsType,  universeEquality Error :dependent_set_memberEquality_alt,  setElimination rename independent_pairFormation dependent_functionElimination natural_numberEquality unionElimination independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  int_eqEquality voidElimination Error :productIsType,  Error :equalityIsType1,  applyLambdaEquality instantiate cumulativity because_Cache imageElimination Error :lambdaFormation_alt,  Error :dependent_pairEquality_alt,  closedConclusion setEquality independent_pairEquality

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[L:T  List].  \mforall{}[x:\{x:T|  \muparrow{}(P  x)\}  ].
    (member-filter-witness(P;L;x)  \mmember{}  (x  \mmember{}  L)  {}\mRightarrow{}  (x  \mmember{}  filter(P;L)))



Date html generated: 2019_06_20-PM-01_25_12
Last ObjectModification: 2018_10_15-PM-02_35_51

Theory : list_1


Home Index