Nuprl Lemma : filter-index_wf

[T:Type]. ∀[P:T ⟶ 𝔹]. ∀[L:T List].  (filter-index(P;L) ∈ i:{i:ℕ||L||| ↑(P L[i])}  ⟶ {j:ℕ||filter(P;L)||| filter(P;L)[\000Cj] L[i] ∈ T} )


Proof




Definitions occuring in Statement :  filter-index: filter-index(P;L) select: L[n] length: ||as|| filter: filter(P;l) list: List int_seg: {i..j-} assert: b bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] and: P ∧ Q prop: or: P ∨ Q select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] cons: [a b] le: A ≤ B less_than': less_than'(a;b) colength: colength(L) guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T decidable: Dec(P) subtype_rel: A ⊆B int_seg: {i..j-} lelt: i ≤ j < k filter-index: filter-index(P;L) so_lambda: so_lambda3 so_apply: x[s1;s2;s3] eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt istype: istype(T) nat_plus: + uiff: uiff(P;Q) bool: 𝔹 unit: Unit bfalse: ff bnot: ¬bb assert: b nequal: a ≠ b ∈  true: True iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  void_wf nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than list-cases length_of_nil_lemma stuck-spread istype-base filter_nil_lemma int_seg_wf product_subtype_list colength-cons-not-zero colength_wf_list istype-void istype-le subtract-1-ge-0 subtype_base_sq intformeq_wf int_formula_prop_eq_lemma set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf intformnot_wf itermSubtract_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_term_value_add_lemma decidable__le le_wf length_of_cons_lemma filter_cons_lemma length_wf istype-nat istype-assert select_wf int_seg_properties decidable__lt list_wf bool_wf istype-universe list_ind_cons_lemma istype-false add_nat_plus length_wf_nat filter_wf5 subtype_rel_dep_function l_member_wf nat_plus_properties add-is-int-iff false_wf cons_wf non_neg_length assert_functionality_wrt_uiff select_cons_tl eq_int_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int add-member-int_seg2 ifthenelse_wf select_cons_tl_sq2 int_seg_subtype_nat equal_wf squash_wf true_wf subtype_rel_self iff_weakening_equal select-cons-tl equal-wf-T-base assert_wf bnot_wf not_wf add-zero uiff_transitivity assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut functionExtensionality voidElimination thin instantiate extract_by_obid hypothesis functionExtensionality_alt setElimination rename lambdaFormation_alt sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination Error :memTop,  independent_pairFormation universeIsType axiomEquality equalityTransitivity equalitySymmetry functionIsTypeImplies inhabitedIsType unionElimination baseClosed promote_hyp hypothesis_subsumption productElimination equalityIstype because_Cache dependent_set_memberEquality_alt applyLambdaEquality imageElimination baseApply closedConclusion applyEquality intEquality sqequalBase addEquality setIsType isect_memberEquality_alt isectIsTypeImplies functionIsType universeEquality cumulativity setEquality pointwiseFunctionality productIsType equalityElimination minusEquality imageMemberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[L:T  List].
    (filter-index(P;L)  \mmember{}  i:\{i:\mBbbN{}||L|||  \muparrow{}(P  L[i])\}    {}\mrightarrow{}  \{j:\mBbbN{}||filter(P;L)|||  filter(P;L)[j]  =  L[i]\}  )



Date html generated: 2020_05_19-PM-09_42_29
Last ObjectModification: 2019_12_31-PM-00_12_36

Theory : list_1


Home Index