Nuprl Lemma : member-insert-no-combine

T:Type. ∀cmp:comparison(T). ∀x,z:T. ∀v:T List.  ((z ∈ insert-no-combine(cmp;x;v)) ⇐⇒ (z ∈ [x v]))


Proof




Definitions occuring in Statement :  insert-no-combine: insert-no-combine(cmp;x;l) comparison: comparison(T) l_member: (x ∈ l) cons: [a b] list: List all: x:A. B[x] iff: ⇐⇒ Q universe: Type
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q insert-no-combine: insert-no-combine(cmp;x;l) so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] prop: iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q comparison: comparison(T) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) uimplies: supposing a ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A
Lemmas referenced :  list_induction iff_wf l_member_wf insert-no-combine_wf cons_wf list_wf list_ind_nil_lemma list_ind_cons_lemma comparison_wf nil_wf le_int_wf bool_wf eqtt_to_assert assert_of_le_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot le_wf cons_member or_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination because_Cache sqequalRule lambdaEquality cumulativity hypothesisEquality hypothesis independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality rename universeEquality independent_pairFormation natural_numberEquality applyEquality setElimination unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination dependent_pairFormation promote_hyp instantiate addLevel orFunctionality inrFormation inlFormation

Latex:
\mforall{}T:Type.  \mforall{}cmp:comparison(T).  \mforall{}x,z:T.  \mforall{}v:T  List.
    ((z  \mmember{}  insert-no-combine(cmp;x;v))  \mLeftarrow{}{}\mRightarrow{}  (z  \mmember{}  [x  /  v]))



Date html generated: 2017_04_17-AM-08_30_57
Last ObjectModification: 2017_02_27-PM-04_52_03

Theory : list_1


Home Index