Nuprl Lemma : modulus-int_mod-nonzero
∀[n:ℕ+]. ∀[x:ℤ_n].  x mod n ∈ ℕ+n supposing x ≠ 0 ∈ ℤ_n 
Proof
Definitions occuring in Statement : 
int_mod: ℤ_n
, 
modulus: a mod n
, 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
nequal: a ≠ b ∈ T 
, 
member: t ∈ T
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
int_seg: {i..j-}
, 
subtype_rel: A ⊆r B
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
nequal: a ≠ b ∈ T 
, 
guard: {T}
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
int_mod: ℤ_n
, 
quotient: x,y:A//B[x; y]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
sq_type: SQType(T)
Lemmas referenced : 
modulus_wf_int_mod, 
int_seg_properties, 
nat_plus_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
lelt_wf, 
nequal_wf, 
int_mod_wf, 
int-subtype-int_mod, 
nat_plus_wf, 
quotient-member-eq, 
eqmod_wf, 
eqmod_equiv_rel, 
equal-wf-base, 
equal-wf-T-base, 
int_seg_wf, 
subtype_base_sq, 
int_subtype_base, 
mod-eqmod, 
eqmod_inversion
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_set_memberEquality, 
applyEquality, 
because_Cache, 
sqequalRule, 
independent_pairFormation, 
natural_numberEquality, 
setElimination, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
axiomEquality, 
lambdaFormation, 
pointwiseFunctionalityForEquality, 
pertypeElimination, 
productEquality, 
baseClosed, 
instantiate, 
cumulativity
Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[x:\mBbbZ{}\_n].    x  mod  n  \mmember{}  \mBbbN{}\msupplus{}n  supposing  x  \mneq{}  0  \mmember{}  \mBbbZ{}\_n 
Date html generated:
2018_05_21-PM-00_59_50
Last ObjectModification:
2018_05_19-AM-06_36_12
Theory : num_thy_1
Home
Index