Nuprl Lemma : modulus-int_mod-nonzero

[n:ℕ+]. ∀[x:ℤ_n].  mod n ∈ ℕ+supposing x ≠ 0 ∈ ℤ_n 


Proof




Definitions occuring in Statement :  int_mod: _n modulus: mod n int_seg: {i..j-} nat_plus: + uimplies: supposing a uall: [x:A]. B[x] nequal: a ≠ b ∈  member: t ∈ T natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a int_seg: {i..j-} subtype_rel: A ⊆B lelt: i ≤ j < k and: P ∧ Q nequal: a ≠ b ∈  guard: {T} nat_plus: + all: x:A. B[x] decidable: Dec(P) or: P ∨ Q false: False not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: int_mod: _n quotient: x,y:A//B[x; y] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] sq_type: SQType(T)
Lemmas referenced :  modulus_wf_int_mod int_seg_properties nat_plus_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma lelt_wf nequal_wf int_mod_wf int-subtype-int_mod nat_plus_wf quotient-member-eq eqmod_wf eqmod_equiv_rel equal-wf-base equal-wf-T-base int_seg_wf subtype_base_sq int_subtype_base mod-eqmod eqmod_inversion
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_set_memberEquality applyEquality because_Cache sqequalRule independent_pairFormation natural_numberEquality setElimination rename equalityTransitivity equalitySymmetry applyLambdaEquality productElimination dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality axiomEquality lambdaFormation pointwiseFunctionalityForEquality pertypeElimination productEquality baseClosed instantiate cumulativity

Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[x:\mBbbZ{}\_n].    x  mod  n  \mmember{}  \mBbbN{}\msupplus{}n  supposing  x  \mneq{}  0  \mmember{}  \mBbbZ{}\_n 



Date html generated: 2018_05_21-PM-00_59_50
Last ObjectModification: 2018_05_19-AM-06_36_12

Theory : num_thy_1


Home Index