Nuprl Lemma : polymorphic-list

f:⋂A:Type. (A ⟶ (A List)). ∃n:ℕ(f x.repn(n;x)) ∈ (⋂A:Type. (A ⟶ (A List))))


Proof




Definitions occuring in Statement :  repn: repn(n;x) list: List nat: all: x:A. B[x] exists: x:A. B[x] lambda: λx.A[x] isect: x:A. B[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B exists: x:A. B[x] prop: uimplies: supposing a int_seg: {i..j-} guard: {T} nat: ge: i ≥  lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top squash: T true: True iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  polymorphic-constant-nat length_wf_nat list_wf equal_wf repn_wf subtype_rel_list polymorphic-id-unique-sq select_wf int_seg_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf intformeq_wf int_formula_prop_less_lemma int_formula_prop_eq_lemma int_seg_wf list_extensionality less_than_wf length_wf nat_wf squash_wf true_wf subtype_rel_self iff_weakening_equal length-repn lelt_wf select-repn
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality lambdaEquality isectElimination hypothesisEquality applyEquality equalityTransitivity equalitySymmetry hypothesis isectEquality universeEquality cumulativity functionEquality sqequalRule productElimination dependent_pairFormation instantiate setEquality independent_isectElimination setElimination rename because_Cache natural_numberEquality unionElimination approximateComputation independent_functionElimination int_eqEquality intEquality voidElimination voidEquality independent_pairFormation applyLambdaEquality functionExtensionality imageElimination imageMemberEquality baseClosed dependent_set_memberEquality

Latex:
\mforall{}f:\mcap{}A:Type.  (A  {}\mrightarrow{}  (A  List)).  \mexists{}n:\mBbbN{}.  (f  =  (\mlambda{}x.repn(n;x)))



Date html generated: 2018_05_21-PM-01_12_02
Last ObjectModification: 2018_05_01-PM-04_37_01

Theory : num_thy_1


Home Index