Nuprl Lemma : polymorphic-list
∀f:⋂A:Type. (A ⟶ (A List)). ∃n:ℕ. (f = (λx.repn(n;x)) ∈ (⋂A:Type. (A ⟶ (A List))))
Proof
Definitions occuring in Statement : 
repn: repn(n;x)
, 
list: T List
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
lambda: λx.A[x]
, 
isect: ⋂x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
uimplies: b supposing a
, 
int_seg: {i..j-}
, 
guard: {T}
, 
nat: ℕ
, 
ge: i ≥ j 
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
squash: ↓T
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
polymorphic-constant-nat, 
length_wf_nat, 
list_wf, 
equal_wf, 
repn_wf, 
subtype_rel_list, 
polymorphic-id-unique-sq, 
select_wf, 
int_seg_properties, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
intformeq_wf, 
int_formula_prop_less_lemma, 
int_formula_prop_eq_lemma, 
int_seg_wf, 
list_extensionality, 
less_than_wf, 
length_wf, 
nat_wf, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal, 
length-repn, 
lelt_wf, 
select-repn
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
lambdaEquality, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry, 
hypothesis, 
isectEquality, 
universeEquality, 
cumulativity, 
functionEquality, 
sqequalRule, 
productElimination, 
dependent_pairFormation, 
instantiate, 
setEquality, 
independent_isectElimination, 
setElimination, 
rename, 
because_Cache, 
natural_numberEquality, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
int_eqEquality, 
intEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
applyLambdaEquality, 
functionExtensionality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
dependent_set_memberEquality
Latex:
\mforall{}f:\mcap{}A:Type.  (A  {}\mrightarrow{}  (A  List)).  \mexists{}n:\mBbbN{}.  (f  =  (\mlambda{}x.repn(n;x)))
Date html generated:
2018_05_21-PM-01_12_02
Last ObjectModification:
2018_05_01-PM-04_37_01
Theory : num_thy_1
Home
Index