Nuprl Lemma : int_term-ext

int_term() ≡ lbl:Atom × if lbl =a "Constant" then ℤ
                        if lbl =a "Var" then ℤ
                        if lbl =a "Add" then left:int_term() × int_term()
                        if lbl =a "Subtract" then left:int_term() × int_term()
                        if lbl =a "Multiply" then left:int_term() × int_term()
                        if lbl =a "Minus" then int_term()
                        else Void
                        fi 


Proof




Definitions occuring in Statement :  int_term: int_term() ifthenelse: if then else fi  eq_atom: =a y ext-eq: A ≡ B product: x:A × B[x] int: token: "$token" atom: Atom void: Void
Definitions unfolded in proof :  ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B member: t ∈ T int_term: int_term() uall: [x:A]. B[x] all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) uimplies: supposing a ifthenelse: if then else fi  sq_type: SQType(T) guard: {T} eq_atom: =a y bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q bnot: ¬bb assert: b false: False int_termco_size: int_termco_size(p) pi1: fst(t) pi2: snd(t) nat: so_lambda: λ2x.t[x] so_apply: x[s] has-value: (a)↓ int_term_size: int_term_size(p) le: A ≤ B less_than': less_than'(a;b) not: ¬A
Lemmas referenced :  int_termco-ext eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom subtype_base_sq atom_subtype_base eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_atom int_subtype_base int_termco_size_wf subtype_partial_sqtype_base nat_wf set_subtype_base le_wf base_wf value-type-has-value int-value-type has-value_wf-partial set-value-type int_term_wf ifthenelse_wf int_termco_wf add-nat false_wf int_term_size_wf nat_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity independent_pairFormation lambdaEquality sqequalHypSubstitution setElimination thin rename cut introduction extract_by_obid hypothesis promote_hyp productElimination hypothesis_subsumption hypothesisEquality applyEquality sqequalRule dependent_pairEquality isectElimination tokenEquality lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry independent_isectElimination because_Cache instantiate cumulativity atomEquality dependent_functionElimination independent_functionElimination dependent_pairFormation voidElimination dependent_set_memberEquality natural_numberEquality intEquality baseApply closedConclusion baseClosed callbyvalueAdd universeEquality productEquality voidEquality sqleReflexivity

Latex:
int\_term()  \mequiv{}  lbl:Atom  \mtimes{}  if  lbl  =a  "Constant"  then  \mBbbZ{}
                                                if  lbl  =a  "Var"  then  \mBbbZ{}
                                                if  lbl  =a  "Add"  then  left:int\_term()  \mtimes{}  int\_term()
                                                if  lbl  =a  "Subtract"  then  left:int\_term()  \mtimes{}  int\_term()
                                                if  lbl  =a  "Multiply"  then  left:int\_term()  \mtimes{}  int\_term()
                                                if  lbl  =a  "Minus"  then  int\_term()
                                                else  Void
                                                fi 



Date html generated: 2017_04_14-AM-08_56_27
Last ObjectModification: 2017_02_27-PM-03_40_11

Theory : omega


Home Index