Nuprl Lemma : tuple-sum-wf-partial

[P:Type]. ∀[G:P ⟶ Type]. ∀[f:i:P ⟶ (G i) ⟶ partial(ℕ)]. ∀[as:P List]. ∀[x:tuple-type(map(G;as))].
  (tuple-sum(f;as;x) ∈ partial(ℕ))


Proof




Definitions occuring in Statement :  tuple-sum: tuple-sum(f;L;x) tuple-type: tuple-type(L) map: map(f;as) list: List partial: partial(T) nat: uall: [x:A]. B[x] member: t ∈ T apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: or: P ∨ Q tuple-sum: tuple-sum(f;L;x) ifthenelse: if then else fi  btrue: tt le: A ≤ B less_than': less_than'(a;b) cons: [a b] decidable: Dec(P) colength: colength(L) nil: [] it: guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] subtype_rel: A ⊆B bfalse: ff bool: 𝔹 unit: Unit
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than list-cases map_nil_lemma null_nil_lemma tupletype_nil_lemma nat-partial-nat istype-false istype-le unit_wf2 product_subtype_list colength-cons-not-zero colength_wf_list decidable__le intformnot_wf int_formula_prop_not_lemma subtract-1-ge-0 subtype_base_sq intformeq_wf int_formula_prop_eq_lemma set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf itermSubtract_wf itermAdd_wf int_term_value_subtract_lemma int_term_value_add_lemma le_wf map_cons_lemma null_cons_lemma tupletype_cons_lemma null-map null_wf istype-nat list_wf partial_wf nat_wf istype-universe add-wf-partial-nat tuple-type_wf map_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut thin Error :lambdaFormation_alt,  extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination independent_pairFormation Error :universeIsType,  axiomEquality equalityTransitivity equalitySymmetry Error :isectIsTypeImplies,  Error :inhabitedIsType,  Error :functionIsTypeImplies,  unionElimination Error :dependent_set_memberEquality_alt,  promote_hyp hypothesis_subsumption productElimination Error :equalityIstype,  because_Cache instantiate applyLambdaEquality imageElimination baseApply closedConclusion baseClosed applyEquality intEquality sqequalBase equalityElimination Error :functionIsType,  universeEquality Error :productIsType,  cumulativity

Latex:
\mforall{}[P:Type].  \mforall{}[G:P  {}\mrightarrow{}  Type].  \mforall{}[f:i:P  {}\mrightarrow{}  (G  i)  {}\mrightarrow{}  partial(\mBbbN{})].  \mforall{}[as:P  List].
\mforall{}[x:tuple-type(map(G;as))].
    (tuple-sum(f;as;x)  \mmember{}  partial(\mBbbN{}))



Date html generated: 2019_06_20-PM-02_03_24
Last ObjectModification: 2019_02_22-AM-11_13_33

Theory : tuples


Home Index