Nuprl Lemma : bag-bind-append2
∀[A,B:Type]. ∀[F,G:A ⟶ bag(B)]. ∀[ba:bag(A)].
  (bag-bind(ba;λa.((F a) + (G a))) = (bag-bind(ba;F) + bag-bind(ba;G)) ∈ bag(B))
Proof
Definitions occuring in Statement : 
bag-bind: bag-bind(bs;f), 
bag-append: as + bs, 
bag: bag(T), 
uall: ∀[x:A]. B[x], 
apply: f a, 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
bag: bag(T), 
quotient: x,y:A//B[x; y], 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
squash: ↓T, 
true: True, 
prop: ℙ, 
uimplies: b supposing a, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
empty-bag: {}, 
so_apply: x[s1;s2;s3], 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
append: as @ bs, 
concat: concat(ll), 
top: Top, 
bag-union: bag-union(bbs), 
bag-map: bag-map(f;bs), 
bag-append: as + bs, 
bag-bind: bag-bind(bs;f), 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
guard: {T}
Lemmas referenced : 
bag_wf, 
bag-bind_wf, 
subtype_rel_self, 
bag-append_wf, 
equal_wf, 
list-subtype-bag, 
istype-universe, 
list_wf, 
permutation_wf, 
reduce_cons_lemma, 
map_cons_lemma, 
empty-bag_wf, 
list_ind_nil_lemma, 
reduce_nil_lemma, 
map_nil_lemma, 
list_induction, 
iff_weakening_equal, 
bag-append-ac, 
true_wf, 
squash_wf, 
bag-append-assoc2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
pointwiseFunctionalityForEquality, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
pertypeElimination, 
productElimination, 
rename, 
equalitySymmetry, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
equalityTransitivity, 
productIsType, 
equalityIsType1, 
inhabitedIsType, 
applyLambdaEquality, 
setElimination, 
applyEquality, 
because_Cache, 
lambdaEquality_alt, 
imageElimination, 
universeIsType, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
hyp_replacement, 
independent_isectElimination, 
equalityIsType4, 
isect_memberEquality_alt, 
axiomEquality, 
functionIsType, 
independent_functionElimination, 
dependent_functionElimination, 
lambdaFormation, 
cumulativity, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
functionExtensionality, 
lambdaEquality, 
levelHypothesis, 
equalityUniverse
Latex:
\mforall{}[A,B:Type].  \mforall{}[F,G:A  {}\mrightarrow{}  bag(B)].  \mforall{}[ba:bag(A)].
    (bag-bind(ba;\mlambda{}a.((F  a)  +  (G  a)))  =  (bag-bind(ba;F)  +  bag-bind(ba;G)))
Date html generated:
2019_10_15-AM-11_05_53
Last ObjectModification:
2018_10_09-AM-10_52_22
Theory : bags
Home
Index