Nuprl Lemma : bag-combine-eq-right

[A,B:Type]. ∀[b:bag(A)]. ∀[f1,f2:A ⟶ bag(B)].
  ⋃x∈b.f1[x] = ⋃x∈b.f2[x] ∈ bag(B) supposing ∀x:{x:A| x ↓∈ b} (f1[x] f2[x] ∈ bag(B))


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs bag-combine: x∈bs.f[x] bag: bag(T) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  bag-combine: x∈bs.f[x] uall: [x:A]. B[x] member: t ∈ T squash: T exists: x:A. B[x] prop: so_lambda: λ2x.t[x] so_apply: x[s] bag-map: bag-map(f;bs) true: True uimplies: supposing a subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q all: x:A. B[x] nat: int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B
Lemmas referenced :  bag_to_squash_list all_wf bag-member_wf equal_wf bag_wf bag-map_wf bag-union_wf squash_wf true_wf iff_weakening_equal map_equal select_wf bag-member-select lelt_wf length_wf list-subtype-bag less_than_wf nat_wf length_wf_nat map_wf subtype_rel_self subtype_rel_set list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality imageElimination productElimination promote_hyp hypothesis equalitySymmetry hyp_replacement applyLambdaEquality setEquality cumulativity sqequalRule lambdaEquality applyEquality functionExtensionality setElimination rename natural_numberEquality equalityTransitivity functionEquality universeEquality isect_memberFormation isect_memberEquality axiomEquality imageMemberEquality baseClosed independent_isectElimination independent_functionElimination lambdaFormation dependent_functionElimination dependent_set_memberEquality independent_pairFormation

Latex:
\mforall{}[A,B:Type].  \mforall{}[b:bag(A)].  \mforall{}[f1,f2:A  {}\mrightarrow{}  bag(B)].
    \mcup{}x\mmember{}b.f1[x]  =  \mcup{}x\mmember{}b.f2[x]  supposing  \mforall{}x:\{x:A|  x  \mdownarrow{}\mmember{}  b\}  .  (f1[x]  =  f2[x])



Date html generated: 2017_10_01-AM-08_56_09
Last ObjectModification: 2017_07_26-PM-04_38_11

Theory : bags


Home Index