Nuprl Lemma : bag-member-map3-deq
∀[T,U:Type].
  ∀x:U. ∀bs:bag(T). ∀f:{v:T| v ↓∈ bs}  ⟶ U.
    (Inj({v:T| v ↓∈ bs} U;f) 
⇒ (∀x,y:U.  Dec(x = y ∈ U)) 
⇒ uiff(x ↓∈ bag-map(f;bs);∃v:T. (v ↓∈ bs ∧ (x = (f v) ∈ U)))\000C)
Proof
Definitions occuring in Statement : 
bag-member: x ↓∈ bs
, 
bag-map: bag-map(f;bs)
, 
bag: bag(T)
, 
inject: Inj(A;B;f)
, 
decidable: Dec(P)
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
squash: ↓T
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
bag-member: x ↓∈ bs
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
decision: Decision
, 
top: Top
, 
inject: Inj(A;B;f)
, 
cand: A c∧ B
, 
sq_stable: SqStable(P)
, 
label: ...$L... t
, 
true: True
Lemmas referenced : 
bag-member-map3, 
bag-member_wf, 
bag-map-member-wf, 
squash_wf, 
exists_wf, 
equal_wf, 
iff_weakening_uiff, 
decidable_wf, 
inject_wf, 
bag_wf, 
single-valued-bag-filter, 
dec2bool_wf, 
subtype_rel_self, 
subtype_rel_union, 
not_wf, 
top_wf, 
dec2bool_decidable, 
assert_wf, 
bag-member-size, 
bag-filter-wf2, 
subtype_rel_bag, 
bag-member-filter2, 
sv-bag-only_wf, 
sq_stable__bag-member, 
bag-member-sv-bag-only, 
sv-bag-only-filter, 
true_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
because_Cache, 
hypothesis, 
independent_pairFormation, 
imageElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
rename, 
universeIsType, 
lambdaEquality, 
productEquality, 
applyEquality, 
dependent_set_memberEquality, 
productIsType, 
productElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
functionIsType, 
inhabitedIsType, 
setEquality, 
setIsType, 
universeEquality, 
lambdaFormation, 
setElimination, 
functionExtensionality, 
cumulativity, 
functionEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_pairFormation, 
natural_numberEquality, 
instantiate
Latex:
\mforall{}[T,U:Type].
    \mforall{}x:U.  \mforall{}bs:bag(T).  \mforall{}f:\{v:T|  v  \mdownarrow{}\mmember{}  bs\}    {}\mrightarrow{}  U.
        (Inj(\{v:T|  v  \mdownarrow{}\mmember{}  bs\}  ;U;f)
        {}\mRightarrow{}  (\mforall{}x,y:U.    Dec(x  =  y))
        {}\mRightarrow{}  uiff(x  \mdownarrow{}\mmember{}  bag-map(f;bs);\mexists{}v:T.  (v  \mdownarrow{}\mmember{}  bs  \mwedge{}  (x  =  (f  v)))))
Date html generated:
2019_10_15-AM-11_02_44
Last ObjectModification:
2018_09_27-AM-11_19_21
Theory : bags
Home
Index