Nuprl Lemma : bag-member-map3-deq

[T,U:Type].
  ∀x:U. ∀bs:bag(T). ∀f:{v:T| v ↓∈ bs}  ⟶ U.
    (Inj({v:T| v ↓∈ bs} ;U;f)  (∀x,y:U.  Dec(x y ∈ U))  uiff(x ↓∈ bag-map(f;bs);∃v:T. (v ↓∈ bs ∧ (x (f v) ∈ U)))\000C)


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs bag-map: bag-map(f;bs) bag: bag(T) inject: Inj(A;B;f) decidable: Dec(P) uiff: uiff(P;Q) uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a squash: T so_lambda: λ2x.t[x] prop: so_apply: x[s] exists: x:A. B[x] bag-member: x ↓∈ bs iff: ⇐⇒ Q rev_implies:  Q subtype_rel: A ⊆B guard: {T} decidable: Dec(P) or: P ∨ Q decision: Decision top: Top inject: Inj(A;B;f) cand: c∧ B sq_stable: SqStable(P) label: ...$L... t true: True
Lemmas referenced :  bag-member-map3 bag-member_wf bag-map-member-wf squash_wf exists_wf equal_wf iff_weakening_uiff decidable_wf inject_wf bag_wf single-valued-bag-filter dec2bool_wf subtype_rel_self subtype_rel_union not_wf top_wf dec2bool_decidable assert_wf bag-member-size bag-filter-wf2 subtype_rel_bag bag-member-filter2 sv-bag-only_wf sq_stable__bag-member bag-member-sv-bag-only sv-bag-only-filter true_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination because_Cache hypothesis independent_pairFormation imageElimination sqequalRule imageMemberEquality baseClosed rename universeIsType lambdaEquality productEquality applyEquality dependent_set_memberEquality productIsType productElimination independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination functionIsType inhabitedIsType setEquality setIsType universeEquality lambdaFormation setElimination functionExtensionality cumulativity functionEquality isect_memberEquality voidElimination voidEquality dependent_pairFormation natural_numberEquality instantiate

Latex:
\mforall{}[T,U:Type].
    \mforall{}x:U.  \mforall{}bs:bag(T).  \mforall{}f:\{v:T|  v  \mdownarrow{}\mmember{}  bs\}    {}\mrightarrow{}  U.
        (Inj(\{v:T|  v  \mdownarrow{}\mmember{}  bs\}  ;U;f)
        {}\mRightarrow{}  (\mforall{}x,y:U.    Dec(x  =  y))
        {}\mRightarrow{}  uiff(x  \mdownarrow{}\mmember{}  bag-map(f;bs);\mexists{}v:T.  (v  \mdownarrow{}\mmember{}  bs  \mwedge{}  (x  =  (f  v)))))



Date html generated: 2019_10_15-AM-11_02_44
Last ObjectModification: 2018_09_27-AM-11_19_21

Theory : bags


Home Index