Nuprl Lemma : bag-splits-permutation
∀T:Type. ∀L1,L2:T List.  (permutation(T;L1;L2) 
⇒ permutation(bag(T) × bag(T);bag-splits(L1);bag-splits(L2)))
Proof
Definitions occuring in Statement : 
bag-splits: bag-splits(b)
, 
bag: bag(T)
, 
permutation: permutation(T;L1;L2)
, 
list: T List
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
trans: Trans(T;x,y.E[x; y])
, 
guard: {T}
, 
prop: ℙ
, 
refl: Refl(T;x,y.E[x; y])
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
bag-splits: bag-splits(b)
, 
bag-append: as + bs
, 
bag-map: bag-map(f;bs)
Lemmas referenced : 
permutation-invariant2, 
permutation_wf, 
bag_wf, 
bag-splits_wf_list, 
list_wf, 
permutation_transitivity, 
permutation_weakening, 
bag-splits-permutation1, 
list_induction, 
cons_wf, 
append_wf, 
nil_wf, 
list_ind_nil_lemma, 
list_ind_cons_lemma, 
equal_wf, 
append_functionality_wrt_permutation, 
map_wf, 
bag-append_wf, 
single-bag_wf, 
pi1_wf, 
pi2_wf, 
permutation-map
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
productEquality, 
cumulativity, 
hypothesis, 
dependent_functionElimination, 
independent_functionElimination, 
because_Cache, 
independent_isectElimination, 
universeEquality, 
promote_hyp, 
rename, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_pairEquality, 
productElimination
Latex:
\mforall{}T:Type.  \mforall{}L1,L2:T  List.
    (permutation(T;L1;L2)  {}\mRightarrow{}  permutation(bag(T)  \mtimes{}  bag(T);bag-splits(L1);bag-splits(L2)))
Date html generated:
2017_10_01-AM-09_00_01
Last ObjectModification:
2017_07_26-PM-04_42_01
Theory : bags
Home
Index