Nuprl Lemma : bag-val-append
∀[T:Type]. ∀[+:T ⟶ T ⟶ T]. ∀[zero:T].
  (Comm(T;+)
  
⇒ Assoc(T;+)
  
⇒ Ident(T;+;zero)
  
⇒ (∀[as,bs:bag(T)].  ((bag-val(zero;+) (as + bs)) = ((bag-val(zero;+) as) + (bag-val(zero;+) bs)) ∈ T)))
Proof
Definitions occuring in Statement : 
bag-val: bag-val(zero;+)
, 
bag-append: as + bs
, 
bag: bag(T)
, 
comm: Comm(T;op)
, 
assoc: Assoc(T;op)
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
ident: Ident(T;op;id)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
bag: bag(T)
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
bag-val: bag-val(zero;+)
, 
bag-append: as + bs
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
prop: ℙ
, 
infix_ap: x f y
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
ident: Ident(T;op;id)
, 
squash: ↓T
, 
true: True
, 
assoc: Assoc(T;op)
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
list_wf, 
quotient-member-eq, 
permutation_wf, 
permutation-equiv, 
list_accum_append, 
subtype_rel_list, 
top_wf, 
equal_wf, 
bag-val_wf, 
bag-append_wf, 
equal-wf-base, 
bag_wf, 
ident_wf, 
assoc_wf, 
comm_wf, 
list_accum_wf, 
and_wf, 
list_induction, 
all_wf, 
list_accum_nil_lemma, 
list_accum_cons_lemma, 
squash_wf, 
true_wf, 
infix_ap_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalHypSubstitution, 
pointwiseFunctionalityForEquality, 
because_Cache, 
sqequalRule, 
pertypeElimination, 
productElimination, 
thin, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
rename, 
lambdaEquality, 
independent_isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
applyEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hyp_replacement, 
applyLambdaEquality, 
functionExtensionality, 
productEquality, 
axiomEquality, 
functionEquality, 
universeEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
setElimination, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[T:Type].  \mforall{}[+:T  {}\mrightarrow{}  T  {}\mrightarrow{}  T].  \mforall{}[zero:T].
    (Comm(T;+)
    {}\mRightarrow{}  Assoc(T;+)
    {}\mRightarrow{}  Ident(T;+;zero)
    {}\mRightarrow{}  (\mforall{}[as,bs:bag(T)].
                ((bag-val(zero;+)  (as  +  bs))  =  ((bag-val(zero;+)  as)  +  (bag-val(zero;+)  bs)))))
Date html generated:
2017_10_01-AM-08_46_21
Last ObjectModification:
2017_07_26-PM-04_31_14
Theory : bags
Home
Index