Nuprl Lemma : nat-inf-attach

F:ℕ ⟶ Type. ∀T:Type.  ∃G:ℕ∞ ⟶ Type. ((∀n:ℕn∞ n) ∧ G ∞ T)


Proof




Definitions occuring in Statement :  nat-inf-infinity: nat2inf: n∞ nat-inf: ℕ∞ equipollent: B nat: all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A int-prod: Π(f[x] x < k) top: Top cand: c∧ B prop: so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q uimplies: supposing a iff: ⇐⇒ Q rev_implies:  Q all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] exists: x:A. B[x] and: P ∧ Q
Lemmas referenced :  nat_wf int_seg_wf nat-inf-attach-unit ext-eq_weakening equipollent_weakening_ext-eq function_functionality_wrt_equipollent_left equipollent_functionality_wrt_equipollent equipollent-void-domain nat-inf-infinity_wf nat2inf_wf equipollent_wf all_wf and_wf nat-inf_wf equipollent-product primrec1_lemma le_wf false_wf int-prod_wf product_functionality_wrt_equipollent_right product_functionality_wrt_equipollent equipollent-multiply equipollent-product-one union_functionality_wrt_equipollent equipollent-product-zero equipollent-sum-zero
Rules used in proof :  multiplyEquality addLevel allFunctionality levelHypothesis andLevelFunctionality allLevelFunctionality unionEquality productEquality dependent_set_memberEquality isect_memberEquality voidElimination voidEquality dependent_pairFormation applyEquality hypothesisEquality independent_pairFormation because_Cache independent_functionElimination independent_isectElimination sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin lambdaEquality isectElimination natural_numberEquality hypothesis productElimination sqequalRule rename universeEquality functionEquality cumulativity

Latex:
\mforall{}F:\mBbbN{}  {}\mrightarrow{}  Type.  \mforall{}T:Type.    \mexists{}G:\mBbbN{}\minfty{}  {}\mrightarrow{}  Type.  ((\mforall{}n:\mBbbN{}.  G  n\minfty{}  \msim{}  F  n)  \mwedge{}  G  \minfty{}  \msim{}  T)



Date html generated: 2018_07_29-AM-09_29_23
Last ObjectModification: 2018_07_27-PM-05_34_13

Theory : basic


Home Index