Nuprl Lemma : complete_wf

[S:System]. (complete{i:l}(S) ∈ ℙ')


Proof




Definitions occuring in Statement :  complete: complete{i:l}(S) System: System uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] complete: complete{i:l}(S) member: t ∈ T prop: or: P ∨ Q l_exists: (∃x∈L. P[x]) l_all: (∀x∈L.P[x]) System: System subtype_rel: A ⊆B so_lambda: λ2x.t[x] all: x:A. B[x] implies:  Q node: node pi2: snd(t) pi1: fst(t) int_seg: {i..j-} uimplies: supposing a lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than: a < b squash: T decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top so_apply: x[s]
Lemmas referenced :  System_wf all_wf int_seg_wf length_wf node_wf subtype_rel_universe1 exists_wf dl-prop_wf dl-valid_wf dl-implies_wf dl-conj_wf select_wf int_seg_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma dl_KS_wf worlds_wf dl_KS_subtype l_all_wf2 l_member_wf pi1_wf_top list_wf dl_forces_wf btrue_wf bfalse_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt sqequalRule unionEquality universeIsType cut introduction extract_by_obid hypothesis thin instantiate sqequalHypSubstitution isectElimination closedConclusion natural_numberEquality because_Cache applyEquality lambdaEquality_alt inhabitedIsType lambdaFormation_alt productElimination equalityIstype hypothesisEquality equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination setElimination rename independent_isectElimination imageElimination unionElimination approximateComputation dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation functionEquality productEquality independent_pairEquality setIsType functionIsType cumulativity

Latex:
\mforall{}[S:System].  (complete\{i:l\}(S)  \mmember{}  \mBbbP{}')



Date html generated: 2019_10_16-AM-11_25_04
Last ObjectModification: 2019_05_09-PM-01_09_20

Theory : dynamic!logic


Home Index