Nuprl Lemma : has-value-is-list-approx-is-type
∀[T:Type]. ∀[t:colist(T)]. ∀[n:ℕ].
  ((λis-list,t. eval u = t in if u is a pair then is-list (snd(u)) otherwise if u = Ax then tt otherwise ⊥^n ⊥ t)↓ ∈ Typ\000Ce)
Proof
Definitions occuring in Statement : 
colist: colist(T)
, 
fun_exp: f^n
, 
nat: ℕ
, 
has-value: (a)↓
, 
callbyvalue: callbyvalue, 
bottom: ⊥
, 
btrue: tt
, 
uall: ∀[x:A]. B[x]
, 
pi2: snd(t)
, 
ispair: if z is a pair then a otherwise b
, 
isaxiom: if z = Ax then a otherwise b
, 
member: t ∈ T
, 
apply: f a
, 
lambda: λx.A[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
compose: f o g
, 
has-value: (a)↓
, 
pi2: snd(t)
, 
ext-eq: A ≡ B
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
fun_exp0_lemma, 
strictness-apply, 
has-value_wf_base, 
subtract-1-ge-0, 
fun_exp_unroll, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
istype-le, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
value-type-has-value, 
colist_wf, 
colist-value-type, 
co-list-cases, 
unit_subtype_colist, 
sqle_wf_base, 
subtype_rel_transitivity, 
b-union_wf, 
unit_wf2, 
subtype_rel_b-union-right, 
colist-ext, 
istype-nat, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
sqequalRule, 
intWeakElimination, 
lambdaFormation_alt, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
universeIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionIsTypeImplies, 
inhabitedIsType, 
baseClosed, 
because_Cache, 
dependent_set_memberEquality_alt, 
unionElimination, 
equalityElimination, 
productElimination, 
equalityIstype, 
promote_hyp, 
instantiate, 
cumulativity, 
callbyvalueReduce, 
hypothesis_subsumption, 
productEquality, 
isectIsTypeImplies, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[t:colist(T)].  \mforall{}[n:\mBbbN{}].
    ((\mlambda{}is-list,t.  eval  u  =  t  in
                                if  u  is  a  pair  then  is-list  (snd(u))  otherwise  if  u  =  Ax  then  tt  otherwise  \mbot{}\^{}n 
        \mbot{} 
        t)\mdownarrow{}  \mmember{}  Type)
Date html generated:
2019_10_16-AM-11_38_22
Last ObjectModification:
2019_06_26-PM-05_07_14
Theory : eval!all
Home
Index