Nuprl Lemma : is-list-if-has-value-fun_wf

[t:Base]. ∀[n:ℕ].  (is-list-if-has-value-fun(t;n) ∈ ℙ)


Proof




Definitions occuring in Statement :  is-list-if-has-value-fun: is-list-if-has-value-fun(t;n) nat: uall: [x:A]. B[x] prop: member: t ∈ T base: Base
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T is-list-if-has-value-fun: is-list-if-has-value-fun(t;n) nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: decidable: Dec(P) or: P ∨ Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b so_lambda: λ2x.t[x] has-value: (a)↓ pi2: snd(t) so_apply: x[s]
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf base_wf primrec0_lemma unit_wf2 decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma primrec-unroll eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int isect_wf has-value_wf_base has-value-implies-dec-ispair-2 top_wf has-value-implies-dec-isaxiom-2 true_wf false_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry unionElimination because_Cache equalityElimination productElimination promote_hyp instantiate cumulativity baseApply closedConclusion baseClosed

Latex:
\mforall{}[t:Base].  \mforall{}[n:\mBbbN{}].    (is-list-if-has-value-fun(t;n)  \mmember{}  \mBbbP{})



Date html generated: 2018_05_21-PM-10_19_21
Last ObjectModification: 2017_07_26-PM-06_36_58

Theory : eval!all


Home Index