Nuprl Lemma : exp-assoced-one

x:ℤ. ∀n:ℕ+.  ((x^n 1)  (x 1))


Proof




Definitions occuring in Statement :  assoced: b exp: i^n nat_plus: + all: x:A. B[x] implies:  Q natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] exp: i^n uall: [x:A]. B[x] member: t ∈ T nat_plus: + top: Top implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A prop: bfalse: ff or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b nat: nequal: a ≠ b ∈  decidable: Dec(P)
Lemmas referenced :  le_wf int_term_value_subtract_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma itermSubtract_wf intformle_wf intformnot_wf decidable__le subtract_wf mul-assoced-one nat_plus_wf exp_wf2 neg_assert_of_eq_int assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eqff_to_assert assoced_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_and_lemma intformless_wf itermConstant_wf itermVar_wf intformeq_wf intformand_wf satisfiable-full-omega-tt nat_plus_properties assert_of_eq_int eqtt_to_assert bool_wf eq_int_wf primrec-unroll
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalRule cut lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality isect_memberEquality voidElimination voidEquality hypothesis natural_numberEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination because_Cache dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination independent_pairFormation computeAll promote_hyp instantiate cumulativity independent_functionElimination multiplyEquality equalityEquality dependent_set_memberEquality

Latex:
\mforall{}x:\mBbbZ{}.  \mforall{}n:\mBbbN{}\msupplus{}.    ((x\^{}n  \msim{}  1)  {}\mRightarrow{}  (x  \msim{}  1))



Date html generated: 2016_05_15-PM-04_46_03
Last ObjectModification: 2016_01_16-AM-11_23_28

Theory : general


Home Index